728x90
반응형

이번에는 행렬(matrix)에 대해 학습 해보자, 행렬은 통계 분석부터 요즘 핫한 딥러닝까지 두루 쓰이는 것으로, 행렬에 대해 자세히 파고 들어간다면, 몇 주 동안 행렬에 대해서만 다뤄도 부족할 것이다.

지금은 행렬에 대해 기초적인 수준에서 접근을 해볼 것이며, 총 3개의 파트로 나눠 학습해보고자 한다.

파트1에선 R에서 행렬의 생성과 기본적인 접근법, 파트2에선 행렬의 Indexing과 행렬 연산 등을 공부하고, 파트3에선 가운데 행렬과 같은 조금 특이한 행렬에 대해 학습하도록 하자.

행렬(Matrix)

: 벡터를 행과 열로 갖는 표 형식으로 확장한 것이 행렬이다.

  • 행렬에는 한 가지 유형의 스칼라만 사용할 수 있다.
  • 행렬에 들어가는 Data는 일반적으로 벡터가 들어간다.
    (즉, 1차원인 벡터를 2차원으로 바꾼 것을 행렬이라고 할 수 있다.)

 

행렬 생성

  • matrix()
    : 행렬을 생성한다.
  • 주요 Parameter
    : matrix(data, nrow: 행의 수, ncol: 열의 수, byrow: 행부터 데이터를 채움, dimnames: 행렬의 각 차원에 부여할 이름)
# matrix를 만들어보자.
vt = seq(from = 1, by = 2, length = 12)
mat = matrix(vt, nrow = 4, byrow = TRUE, dimnames = list(c("r1", "r2", "r3", "r4"), c("c1", "c2", "c3")))
mat

※ dimnames에 들어간 list는 추후 공부할 데이터 타입으로, n개의 데이터  타입을 담을 수 있는 형태라고 보면 된다.
자세한 것은 추후 학습하도록 하자.

##    c1 c2 c3
## r1  1  3  5
## r2  7  9 11
## r3 13 15 17
## r4 19 21 23

 

 

행렬의 크기와 벡터의 길이가 다를 경우

  • 만약, 벡터의 길이가 행렬을 구성하기에 적합하지 않은 길이인 경우, 오류 메시지가 발생하고 벡터의 앞부분부터 행렬의 빈자리에 들어가게 된다.
# matrix를 만들어보자.
vt_diff = seq(from = 1, by = 2, length = 10)
mat_diff = matrix(vt_diff, nrow = 5, ncol = 4, byrow = TRUE)
mat_diff
##      [,1] [,2] [,3] [,4]
## [1,]    1    3    5    7
## [2,]    9   11   13   15
## [3,]   17   19    1    3
## [4,]    5    7    9   11
## [5,]   13   15   17   19
  • 위 행렬에서 볼 수 있듯이 3행 3열부터 Data로 들어간 벡터가 처음부터 값이 입력되었다.

 

 

행렬의 기본적인 정보를 가지고 와보자.

# 대상이 될 행렬.
vt = seq(from = 1, by = 2, length = 12)
mat <- matrix(vt, nrow = 4, byrow = TRUE, dimnames = list(c("r1", "r2", "r3", "r4"), c("c1", "c2", "c3")))

1) 행렬의 차원별 이름 가지고 오기.

  • dimnames()
    : 객체의 각 차원 이름을 가지고 온다.(dim = dimension)
  • rownames()
    : 행렬의 행 이름을 가지고 온다.
  • colnames()
    : 행렬의 열 이름을 가지고 온다.
# 행렬의 각 차원 이름을 모두 가지고 와보자.
dimnames(mat)
## [[1]]
## [1] "r1" "r2" "r3" "r4"
## 
## [[2]]
## [1] "c1" "c2" "c3"
# 행렬에서 행 이름을 가져와보자.
rownames(mat)
## [1] "r1" "r2" "r3" "r4"
# 행렬에서 열 이름을 가져와보자.
colnames(mat)
## [1] "c1" "c2" "c3"

 

2) 행렬에 다른 이름을 부여해보자.

  • 행렬의 차원별 이름 바꾸기는 들어가는 데이터 타입만 다를 뿐 벡터와 동일하다.
# 행렬에 다른 이름을 부여해보자.
dimnames(mat) <-list(c("a1", "a2", "a3", "a4"), c("b1", "b2", "b3"))
mat
##    b1 b2 b3
## a1  1  3  5
## a2  7  9 11
## a3 13 15 17
## a4 19 21 23
# 행의 이름을 바꿔보자.
rownames(mat) <- c("행1", "행2", "행3", "행4")
mat
##     b1 b2 b3
## 행1  1  3  5
## 행2  7  9 11
## 행3 13 15 17
## 행4 19 21 23
#열의 이름을 바꿔보자.
colnames(mat) <- c("열1", "열2", "열3")
mat
##     열1 열2 열3
## 행1   1   3   5
## 행2   7   9  11
## 행3  13  15  17
## 행4  19  21  23

 

3) 행렬의 크기에 관한 정보를 가지고 와보자.

  • nrow()
    : 행렬의 행의 갯수
  • ncol()
    : 행렬의 열의 갯수
  • dim()
    : 행렬의 차원별 크기
  • length()
    : 행렬 내 원소들의 수 (벡터의 길이와 동일하다!)
  • mode()
    : 행렬 내 원소의 타입 확인
  • str()
    : 행렬뿐만 아니라 벡터, 데이터 프레임 등에서도 사용되는 것으로, 원소의 양, 차원, 차원 이름, 원소의 타입 등 데이터의 전반적인 정보를 가지고 온다.
# 행렬의 행의 갯수를 가지고 와보자.
nrow(mat)
## [1] 4
# 행렬의 열의 갯수를 가지고 와보자.
ncol(mat)
## [1] 3
# 행렬의 차원별 크기를 가지고 와보자.
dim(mat)
## [1] 4 3
# 행렬에 있는 원소의 수를 가지고 와보자
length(mat)
## [1] 12
# 행렬의 원소 타입을 확인해보자.
mode(mat)
## [1] "numeric"
# 행렬의 정보들을 정리해서 봐보자!
str(mat)
##  num [1:4, 1:3] 1 7 13 19 3 9 15 21 5 11 ...
##  - attr(*, "dimnames")=List of 2
##   ..$ : chr [1:4] "r1" "r2" "r3" "r4"
##   ..$ : chr [1:3] "c1" "c2" "c3"

 

4) 행렬의 형태를 바꿔보자.
: 행렬의 차원 변경은 원소의 수가 같다면 쉽게 할 수 있다.

# 행렬의 차원을 바꿔보자.
dim(mat) <- c(2,6)
mat
##      [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]    1   13    3   15    5   17
## [2,]    7   19    9   21   11   23

 

 

 

벡터들을 합쳐서 행렬을 만들어보자.

  • 두 개 이상의 벡터를 묶어서 행렬을 만들어보자.
  • cbind()
    : 열로 벡터들을 묶는다.
  • rbind()
    : 행으로 벡터들을 묶는다.
  • rbind()나 cbind()는 Matrix뿐만 아니라 R에서 가장 많이 쓰이는 데이터 타입인 DataFrame에서도 쓰인다.
  • 만약 벡터의 길이가 동일하지 않는다면, 경고문을 띄운 후 길이가 가장 긴 벡터에 맞게 다른 벡터들은 앞부분부터 뒤에 추가하여 생성된다.
vt1 = c(1:6)
vt2 = c(8:3)
vt3 = rep(c(1,2,3), times = 2)
vt4 = c("a", "b", "c", "d", "e", "f")
vt5 = c(1:10)
# 열로 묶어보자
cbind(vt1, vt2, vt3)
##      vt1 vt2 vt3
## [1,]   1   8   1
## [2,]   2   7   2
## [3,]   3   6   3
## [4,]   4   5   1
## [5,]   5   4   2
## [6,]   6   3   3
# 행으로 묶어보자
rbind(vt1, vt2, vt3)
##     [,1] [,2] [,3] [,4] [,5] [,6]
## vt1    1    2    3    4    5    6
## vt2    8    7    6    5    4    3
## vt3    1    2    3    1    2    3
# 숫자 벡터에 문자 벡터를 섞어보자
cbind(vt1, vt2, vt3, vt4)
##      vt1 vt2 vt3 vt4
## [1,] "1" "8" "1" "a"
## [2,] "2" "7" "2" "b"
## [3,] "3" "6" "3" "c"
## [4,] "4" "5" "1" "d"
## [5,] "5" "4" "2" "e"
## [6,] "6" "3" "3" "f"

※ 숫자형 벡터와 문자형 벡터를 하나의 행렬로 묶는 경우, 행렬엔 하나의 변수 타입만 들어갈 수 있으므로 character형으로 바뀐 것을 볼 수 있다.

# 길이가 다른 벡터를 추가해보자
cbind(vt1, vt2, vt3, vt5)
## Warning in cbind(vt1, vt2, vt3, vt5): number of rows of result is not a multiple
## of vector length (arg 1)
##       vt1 vt2 vt3 vt5
##  [1,]   1   8   1   1
##  [2,]   2   7   2   2
##  [3,]   3   6   3   3
##  [4,]   4   5   1   4
##  [5,]   5   4   2   5
##  [6,]   6   3   3   6
##  [7,]   1   8   1   7
##  [8,]   2   7   2   8
##  [9,]   3   6   3   9
## [10,]   4   5   1  10

※ 길이가 다른 벡터가 추가 되면, 길이가 짧은 벡터들은 앞 부분부터 반복하여 생성되는 것을 알 수 있다.

 

 

 

지금까지 행렬에 대한 기본적인 정보를 가지고 노는 법에 대해 학습해보았다.

눈치가 빠른 사람이라면, 행렬의 이름 부여, 크기 보기 등이 꽤나 비슷한 것을 알 수 있는데, R에서 사용하는 대부분의 데이터 형태 조작 방법이, 이 틀에서 크게 벗어나지 않는다는 점이, R로 데이터를 가지고 놀 때 매우 편리한 부분이다.

다음 포스트에선 행렬 데이터 접근(Indexing), 행렬의 연산에 대하여 다뤄보도록 하겠다.

 

 

 

728x90
반응형

+ Recent posts