728x90
반응형

 이전 포스트까지 Wide & Deep Learning 모델을 사용해서 다중 입력 모델을 만들어보았다. 이번엔 이전 모델에 추가로 출력층을 추가하여 출력층을 2개로 만들어 보도록 하자.

 

 

다중 출력 모델

  • 일반적으로 다중 출력 모델을 사용하는 이유는 다음과 같다.

  1. 프로세스가 서로 독립적인 경우:
    동일한 데이터 셋에서 두 개 이상의 출력층을 생성하지만, 출력된 결과는 전혀 다른 작업을 위해 실행되는 경우로, 예를 들어 인터넷 사용 Log 데이터를 기반으로, 대상의 관심사 파악(분류 모델)과 인터넷 사용률 예측(회귀 모델)은 별개의 목적을 위해 진행된다.
  2. 프로세스가 한 목적을 위해 상호 보완적으로 이루어지는 경우:
    하나의 목적을 이루기 위해 두 개 이상의 출력 값이 필요하여, 동일한 데이터 셋에서 두 개 이상의 출력층을 뽑아내는 경우로, 예를 들어 영상 속 물건을 인식하는 모델을 만든다면, 영상 속 물건의 위치(회귀 모델)와 물건의 종류(분류 모델)를 동시에 파악해야 한다.
  3. 규제 도구로써의 다중 출력 모델:
    하위 네트워크가 나머지 네트워크에 의존하지 않고, 그 자체로 유용한 성능을 내는지 확인을 하기 위한 규제 기법으로 사용

 이번 포스트에서는 Wide & Deep Learning model에 다중 출력 모델을 규제 도구로써 사용해보도록 하자.

 

 

 

 

1. 규제 도구로써의 다중 출력 모델

  • 보조 출력층(Auxiliary Output)을 통해, 하위 네트워크가 나머지 네트워크에 의존하지 않고 그 자체로 유용한 것을 학습하는지 확인한다. 위 모델대로라면, Deep model에서의 출력된 값이 Wide model과의 연결로 인해, 원하는 결과를 뽑아내는 것인지, Deep model으로 인해 그러한 결과가 나왔는지 확인할 수 있다.
  • 이를 통해, 과대 적합을 감소시키고, 모델의 일반화 성능이 높이도록 학습에 제약을 가할 수 있다.

 

 

 

 

2. 모델 생성 이전까지의 코드 가져오기

  • 이전 포스트에서 만들었던, 모델 이전까지의 코드를 모두 가지고 온다.
  • 입력층이 2개일 때는 입력 데이터를 목적에 맞게 나눴어야 했지만, 이번엔 출력층이 다른 데이터를 출력하는 것이 아니라, 보조 출력층(Auxiliary Output)과 주 출력층(Main Output)이 동일한 정답에 대해 어느 정도의 손실 값과 정확도를 내보내는지 알고 싶은 것이므로, Label dataset을 나누지 않아도 된다.
#################################### Import Module ####################################
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import callbacks
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import (Input, Dense, concatenate)
########################################################################################





#################################### Import Dataset ####################################
# 캘리포니아 데이터 가져오기
Rawdict = fetch_california_housing()
CaliFornia_DF = pd.DataFrame(Rawdict.data, columns=Rawdict.feature_names)
########################################################################################




#################################### Data Handling #####################################
# 데이터를 쪼개기 좋게 변수의 순서를 바꾸자
CaliFornia_DF = CaliFornia_DF[["HouseAge", "Population", "Latitude", "Longitude", "MedInc",
                               "AveRooms", "AveBedrms", "AveOccup"]]

# train, validation, test set으로 쪼갠다.
X_train_all, X_test, y_train_all, y_test = train_test_split(CaliFornia_DF.values, Rawdict.target, test_size = 0.3)
X_train, X_valid, y_train, y_valid = train_test_split(X_train_all, y_train_all, test_size = 0.2)

# 정규화시킨다.
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid)
X_test = scaler.transform(X_test)

# 데이터 셋을 input layer의 수만큼 쪼갠다.
X_train_A, X_train_B = X_train[:, :1], X_train[:,1:]
X_valid_A, X_valid_B = X_valid[:, :1], X_valid[:,1:]
X_test_A, X_test_B = X_test[:, :1], X_test[:,1:]
########################################################################################

 

 

 

 

3. 모델 생성

######################################## Model ########################################
input_A = Input(shape=[1], name = "deep_input")
input_B = Input(shape=[7], name = "wide_input")
hidden1 = Dense(30, activation="relu", name = "hidden1")(input_A)
hidden2 = Dense(30, activation="relu", name = "hidden2")(hidden1)
concat = concatenate([input_B, hidden2], name = "concat")
output = Dense(1, name="main_output")(concat)

# 보조 출력층 생성
aux_output = Dense(1, name="aux_output")(hidden2)
model = keras.Model(inputs=[input_A, input_B], outputs=[output, aux_output])
########################################################################################
>>> model.summary()
Model: "model"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
deep_input (InputLayer)         [(None, 1)]          0                                            
__________________________________________________________________________________________________
hidden1 (Dense)                 (None, 30)           60          deep_input[0][0]                 
__________________________________________________________________________________________________
wide_input (InputLayer)         [(None, 7)]          0                                            
__________________________________________________________________________________________________
hidden2 (Dense)                 (None, 30)           930         hidden1[0][0]                    
__________________________________________________________________________________________________
concat (Concatenate)            (None, 37)           0           wide_input[0][0]                 
                                                                 hidden2[0][0]                    
__________________________________________________________________________________________________
main_output (Dense)             (None, 1)            38          concat[0][0]                     
__________________________________________________________________________________________________
aux_output (Dense)              (None, 1)            31          hidden2[0][0]                    
==================================================================================================
Total params: 1,059
Trainable params: 1,059
Non-trainable params: 0
__________________________________________________________________________________________________
  • 앞서 학습했던 방법처럼 보조 출력층 생성 역시 Keras API 함수로 구현하는 것은 꽤 단순하다.
  • 보조 출력층(aux_output)과 데이터를 받는 층(hidden2)을 연결시키고, model에서 outputs을 2개 다 잡아주면 된다.

 

 

 

 

4. 모델 컴파일

  • 다중 입력 모델과 달리 다중 출력 모델에서는 모델 컴파일 방법이 바뀌게 된다.
  • 이는, 컴파일에서 출력층에서 모델을 평가하게 되는 손실 함수를 결정하기 때문이고, 이 손실 함수는 출력층마다 다르게 설정해야 하기 때문이다.
# 모델 컴파일
model.compile(optimizer=Adam(learning_rate=0.005),
              loss = ["msle", "msle"],
              metrics=["accuracy"],
              loss_weights=[0.9, 0.1])
  • 최적화나 모델 평가 지표는 출력층의 수와 상관없기 때문에 바뀌지 않는다.
  • 손실 함수는 출력층이 2개가 되었으므로, 2개를 잡아줘야 한다(만약, 손실 함수를 하나만 잡아준다면, 모든 출력의 손실 함수가 같다고 가정한다 - 위 경우에는 출력층이 회귀모형이므로, msle로 같은 손실 함수를 사용하므로, msle 하나만 사용해도 된다).
  • loss_weights: 출력 층별 손실 값의 가중치를 정해준다. 케라스는 기본적으로 출력된 손실 값들을 모두 더해 최종 손실을 구하며, 이를 기반으로 학습을 한다. 여기서 사용된 보조 출력은 규제로 사용되었기 때문에 주 출력이 더 중요하다. 그러므로, 주 손실 값에 더 많은 가중치를 부여하였다.

 

 

 

 

5. 모델 학습 및 평가

  • 모델 학습과 평가에서의 차이는 Label 역시 각 출력층에 맞게 2개가 들어가야 한다는 것이다.
  • 해당 다중 출력 모델은 규제 목적으로 보조 출력층을 추가한 것이므로, 동일한 데이터를 label로 사용해도 된다.
early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=30, restore_best_weights=True)

# 학습
history = model.fit([X_train_A, X_train_B], [y_train, y_train],
                    epochs=300,
                    batch_size = 32,
                    validation_data=([X_valid_A, X_valid_B], [y_valid, y_valid]),
                    callbacks=[early_stop])
Epoch 1/300
362/362 [==============================] - 3s 6ms/step - loss: 0.2162 - main_output_loss: 0.1988 - aux_output_loss: 0.3726 - main_output_accuracy: 0.0027 - aux_output_accuracy: 0.0023 - val_loss: 0.0697 - val_main_output_loss: 0.0633 - val_aux_output_loss: 0.1276 - val_main_output_accuracy: 0.0048 - val_aux_output_accuracy: 0.0048
Epoch 2/300
362/362 [==============================] - 1s 2ms/step - loss: 0.0650 - main_output_loss: 0.0584 - aux_output_loss: 0.1243 - main_output_accuracy: 0.0026 - aux_output_accuracy: 0.0026 - val_loss: 0.0619 - val_main_output_loss: 0.0544 - val_aux_output_loss: 0.1295 - val_main_output_accuracy: 0.0048 - val_aux_output_accuracy: 0.0048
Epoch 3/300
362/362 [==============================] - 1s 2ms/step - loss: 0.0584 - main_output_loss: 0.0509 - aux_output_loss: 0.1260 - main_output_accuracy: 0.0027 - aux_output_accuracy: 0.0027 - val_loss: 0.0598 - val_main_output_loss: 0.0522 - val_aux_output_loss: 0.1279 - val_main_output_accuracy: 0.0048 - val_aux_output_accuracy: 0.0048
Epoch 4/300
362/362 [==============================] - 1s 2ms/step - loss: 0.0555 - main_output_loss: 0.0480 - aux_output_loss: 0.1229 - main_output_accuracy: 0.0018 - aux_output_accuracy: 0.0018 - val_loss: 0.0591 - val_main_output_loss: 0.0514 - val_aux_output_loss: 0.1281 - val_main_output_accuracy: 0.0045 - val_aux_output_accuracy: 0.0048

...

Epoch 54/300
362/362 [==============================] - 0s 1ms/step - loss: 0.0522 - main_output_loss: 0.0444 - aux_output_loss: 0.1227 - main_output_accuracy: 0.0024 - aux_output_accuracy: 0.0024 - val_loss: 0.0556 - val_main_output_loss: 0.0476 - val_aux_output_loss: 0.1276 - val_main_output_accuracy: 0.0045 - val_aux_output_accuracy: 0.0048
Epoch 55/300
362/362 [==============================] - 1s 1ms/step - loss: 0.0524 - main_output_loss: 0.0446 - aux_output_loss: 0.1225 - main_output_accuracy: 0.0026 - aux_output_accuracy: 0.0026 - val_loss: 0.0540 - val_main_output_loss: 0.0460 - val_aux_output_loss: 0.1263 - val_main_output_accuracy: 0.0045 - val_aux_output_accuracy: 0.0048
Epoch 56/300
362/362 [==============================] - 1s 2ms/step - loss: 0.0525 - main_output_loss: 0.0448 - aux_output_loss: 0.1215 - main_output_accuracy: 0.0024 - aux_output_accuracy: 0.0024 - val_loss: 0.0539 - val_main_output_loss: 0.0458 - val_aux_output_loss: 0.1265 - val_main_output_accuracy: 0.0048 - val_aux_output_accuracy: 0.0048
Epoch 57/300
362/362 [==============================] - 0s 1ms/step - loss: 0.0535 - main_output_loss: 0.0457 - aux_output_loss: 0.1234 - main_output_accuracy: 0.0033 - aux_output_accuracy: 0.0033 - val_loss: 0.0543 - val_main_output_loss: 0.0463 - val_aux_output_loss: 0.1264 - val_main_output_accuracy: 0.0045 - val_aux_output_accuracy: 0.0048
>>> model.evaluate([X_test_A, X_test_B], [y_test, y_test])

194/194 [==============================] - 0s 1ms/step - loss: 0.0533 - main_output_loss: 0.0454 - aux_output_loss: 0.1241 - main_output_accuracy: 0.0029 - aux_output_accuracy: 0.0032
[0.05328081175684929,
 0.04541592299938202,
 0.12406466901302338,
 0.0029069767333567142,
 0.0032299740705639124]
  • 이전과 달리 값이 굉장히 많이 나오기 때문에 이를 파악하기 어려울 수 있는데, 그 내용은 생각보다 상당히 단순하다.
  • 손실 값은 loss: 0.0533, main_output_loss: 0.0454, aux_output_loss: 0.1241이 나왔다.
  • 여기서 loss만 신경 쓰면 된다. 위에서 우리는 main_output_loss와 aus_output_loss의 가중치를 0.9, 0.1로 부여하였는데, loss는 각 손실 값에 해당하는 가중치를 곱하여 합한 값이기 때문이다.

$$ 0.0533 = 0.9*0.0454 + 0.1*0.1241 $$

  • Deep model의 손실 값과 Wide & Deep Learning model의 손실 값을 동시에 반영하여, 총 손실 값을 계산하였으므로, Deep model이 Wide model과의 결합 없이도 우수한 성능을 보이는 것을 알 수 있다.
  • 주 출력층의 Accuracy는 0.0029, 보조 출력층의 Accuracy도 0.0032로 Deep model, Wide & Deep Learning model 모두 Accuracy가 괜찮게 나왔다. 이로 인해 Deep model 자체만으로도 우수한 성능을 보이는 것을 알 수 있다.

5.1. 손실 값과 정확도를 시각화해보자.

def Drawing_Scalars(history_name):
    
    history_DF = pd.DataFrame(history_name.history)
    # 그래프의 크기와 선의 굵기를 설정해주었다.
    history_DF.plot(figsize=(12, 8), linewidth=3)

    # 교차선을 그린다.
    plt.grid(True)

    plt.legend(loc = "upper right", fontsize =15)

    plt.title("Learning Curve", fontsize=30, pad = 30)
    plt.xlabel('Epoch', fontsize = 20, loc = 'center', labelpad = 20)
    plt.ylabel('Variable', fontsize = 20, rotation = 0, loc='center', labelpad = 40)

    # 위 테두리 제거
    ax=plt.gca()
    ax.spines["right"].set_visible(False) # 오른쪽 테두리 제거
    ax.spines["top"].set_visible(False) # 위 테두리 제거
    
    plt.show()
    
    
Drawing_Scalars(history)

  • 굉장히 많은 지표들이 추가되었지만, Early Stopping의 기준으로 사용한 val_loss를 본다면, patience가 30이었으므로, epochs 27에서 모델이 수렴하였다는 것을 알 수 있다.

 

[참고 자료]

 

 

 이번 포스트에서는 다중 출력 모델을 Wide & Deep Learning model에서의 규제 기법으로 사용해보았다. Deep model의 결괏값에 대한 평가가 모델 전체 평가에 반영되었으므로, Deep Model의 일반화가 잘 이루어진 모델이 만들어졌다고 할 수 있다. 

 지금까지 Wide & Deep Learning 모델을 기반으로 다중 입력, 다중 출력 모델을 만드는 방법과 이를 통해 Wide & Deep Learning Model을 더 잘 사용할 수 있도록 해보았다.

728x90
반응형
728x90
반응형

 이전 포스트에서는 Wide & Deep Learning 모델에 대한 간단한 설명과 함수형 API를 사용해서 기초적인 Wide & Deep Learning 모델을 만들어보았다. 이때는 완전히 동일한 Input 데이터를 바라보았으나, Wide & Deep Learning 모델은 다른 Input Layer를 만들어 Wide model과 Deep model에 따로 학습시킬 수 있다.

 

 

1. 다중 입력 Wide & Deep Learning

  • Wide & Deep Learning model의 특징은 Wide model에 전달되는 Feature와 Deep model에 전달되는 Feature를 다르게 할 수 있다는 것이다.
  • 즉, 입력되는 Feature에서 일부 특성은 Wide model로 나머지 특성은 Deep model로 전달할 수 있다.
    (각 모델로 전달되는 특성은 중복 가능하다).
  • Deep model은 입력된 모든 데이터를 MLP에 있는 모든 층에 통과시키다 보니, 간단한 패턴이 연속된 변환으로 인해 왜곡될 위험이 있다.
  • 때문에 Wide & Deep Learning model에서는 일반적으로 간단한 패턴이 있는 Column은 Wide model 쪽으로, 복잡한 패턴이 있는 Column은 Deep model 쪽으로 보낸다.
  • 간단한 패턴이 있어 Wide model로 보낸 Column 역시 Deep model에서 숨겨진 패턴을 찾는데 도움이 될 수 있으므로, Wide model로 Input 될 데이터의 일부 혹은 전체를 Deep model에 같이 넣기도 한다.
  • 이를 도식화해보면 다음과 같다.

  • 위 모델을 보면 Input Layer가 2개 존재하는 것을 볼 수 있는데, 이처럼 한 번에 2개 이상의 Input이 존재하여 동시에 여러 입력을 하는 것을 다중 입력 모델이라 한다.
  • 다중 입력 모델은 Keras의 함수형 API를 사용하면 쉽게 구현할 수 있다.

 

 

 

 

2. 데이터의 각 변수별 상세 정보 파악

  • 이전 포스팅에서 해당 모델을 Input Layer 1개로 넣었을 때, 이미 Accuracy 0.0034, Loss 0.0242로 꽤 괜찮은 결과가 나왔었다. 굳이 데이터를 나눠서 넣을 필요는 없으나, Keras API를 이용해서 다중 입력하는 방법을 학습하기 위해, 데이터 셋을 쪼개 보도록 하겠다.
  • 해당 포스트의 참고 논문(Heng-Tze Cheng et al.(2016))에서 예시로 든 단순한 패턴은 "설치한 앱"과 "열람한 앱"을  Cross-product transformation으로 생성한 희소 특징(Sparse feature)이다.
  • 그러나, 해당 데이터셋에는 그 대상이 될 수 있는 범주형 데이터가 따로 없으므로, 데이터 패턴을 보는 가장 기초적인 방법인 히스토그램과 독립변수와 종속변수 간의 산점도(상관관계)를 만들어, 패턴이 아주 단순한 경우는 Wide model로, 그렇지 않은 경우는 Deep model로 넣어보겠다.

 

# Import Module
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import callbacks
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import (Input, Dense, Concatenate, concatenate)

 

2.1. 데이터 셋 정보 보기

  • sklearn에서 기본으로 제공하는 데이터에서는 아주 쉽게 메타 정보를 볼 수 있다.
>>> Rawdict = fetch_california_housing()
>>> print(Rawdict.DESCR)
.. _california_housing_dataset:

California Housing dataset
--------------------------

**Data Set Characteristics:**

    :Number of Instances: 20640

    :Number of Attributes: 8 numeric, predictive attributes and the target

    :Attribute Information:
        - MedInc        median income in block
        - HouseAge      median house age in block
        - AveRooms      average number of rooms
        - AveBedrms     average number of bedrooms
        - Population    block population
        - AveOccup      average house occupancy
        - Latitude      house block latitude
        - Longitude     house block longitude

    :Missing Attribute Values: None

This dataset was obtained from the StatLib repository.
http://lib.stat.cmu.edu/datasets/

The target variable is the median house value for California districts.

This dataset was derived from the 1990 U.S. census, using one row per census
block group. A block group is the smallest geographical unit for which the U.S.
Census Bureau publishes sample data (a block group typically has a population
of 600 to 3,000 people).

It can be downloaded/loaded using the
:func:`sklearn.datasets.fetch_california_housing` function.

.. topic:: References

    - Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,
      Statistics and Probability Letters, 33 (1997) 291-297
  • 캘리포니아 주택 데이터 셋의 각 Row인 객체는 블록이다.
  • MedInc: 소득의 중앙값
  • HouseAge: 건물 연령 중앙값
  • AveRooms: 평균 객실 수
  • AveBedrms: 평균 침실 수
  • Population: 인구수
  • AveOccup: 평균 주택 점유율
  • Latitude: 위도
  • Longitude: 경도
  • 종속변수(Target): MedHouseVal: 캘리포니아 지역의 주택 가격 중앙값

 

2.1. 변수별 히스토그램 보기

# 독립변수의 히스토그램 그리기
CaliFornia_DF = pd.DataFrame(Rawdict.data, columns=Rawdict.feature_names)
CaliFornia_DF.hist(figsize=(12,8), linewidth=3)
plt.show()

# 종속변수 히스토그램 그리기
plt.hist(Rawdict.target)
plt.show()

 

2.2 변수별 종속변수와의 산점도

fig, axes = plt.subplots(nrows=4, ncols=2, figsize = (12, 20))
ax = axes.ravel()

xlabels = Rawdict.feature_names
plt.suptitle("Predict Variable & MedHouseVal Scatter", y=0.93, fontsize=25)

for i in range(Rawdict.data.shape[1]):

    X = Rawdict.data[:,i]
    Y = Rawdict.target

    ax[i].scatter(X, Y, alpha = 0.025)
    ax[i].set_title(xlabels[i], fontsize=15, fontweight ="bold")

  • Row가 20,640으로 단순하게 산점도로 그리기엔 그 양이 너무 많아, alpha를 0.025로 주어, 데이터가 동일한 위치에 많이 존재하지 않는다면 연하게, 많이 겹칠수록 진하게 그려지도록 설정하였다.
  • 각 변수별 히스토그램과 독립변수 & 종속변수의 산점도를 볼 때, 단순한 패턴을 갖는 것은 AveRooms, AveBedrms, Population, AveOccup로 이들은 히스토그램에서도 데이터가 한쪽에 지나치게 모여있기 때문에 딱히 패턴이 존재하지 않는다. 그러므로, 이들을 Wide model에 넣겠다.
  • MedInc은 그 정도가 강하다고 할 수 있는 수준은 아니지만, 위 데이터 중 가장 뚜렷한 경향성을 가지고 있다. 이를 단순한 패턴으로 인식할지도 모르니, Wide model과 Deep model 양쪽에 넣어보자.

 

 

 

 

3. 데이터셋 쪼개기

  • 입력층이 2개이므로, Train dataset, Validation dataset, Test dataset 모두 2개로 쪼개져야 한다.
  • 출력층은 1개이므로, Label은 쪼개지 않아도 된다.
# 데이터를 쪼개기 좋게 변수의 순서를 바꾸자
CaliFornia_DF = CaliFornia_DF[["HouseAge", "Latitude", "Longitude", "MedInc",
                               "AveRooms", "AveBedrms", "Population", "AveOccup"]]

# train, validation, test set으로 쪼갠다.
X_train_all, X_test, y_train_all, y_test = train_test_split(CaliFornia_DF.values, Rawdict.target, test_size = 0.3)
X_train, X_valid, y_train, y_valid = train_test_split(X_train_all, y_train_all, test_size = 0.2)

# 정규화시킨다.
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid)
X_test = scaler.transform(X_test)

# 데이터 셋을 input layer의 수만큼 쪼갠다.
X_train_A, X_train_B = X_train[:, :4], X_train[:,3:]
X_valid_A, X_valid_B = X_valid[:, :4], X_valid[:,3:]
X_test_A, X_test_B = X_test[:, :4], X_test[:,3:]
>>> X_train_A.shape
(11558, 4)

>>> X_train_B.shape
(11558, 5)

 

 

 

 

4. 모델 생성하기

input_A = Input(shape=[4], name = "deep_input")
input_B = Input(shape=[5], name = "wide_input")
hidden1 = Dense(30, activation="relu", name = "hidden1")(input_A)
hidden2 = Dense(30, activation="relu", name = "hidden2")(hidden1)
concat = concatenate([input_B, hidden2], name = "concat")
output = Dense(1, name="output")(concat)
model = keras.Model(inputs=[input_A, input_B], outputs=[output])
  • 다중 입력 모델 생성 시, 주의사항은 층을 연결하는 부분인 concatenate layer다.
  • 이전 포스트에서는 Concatenate layer를 사용하였고, 이번 포스트에선 맨 앞이 소문자인 concatenate layer를 사용하였는데, 둘 사이의 차이는 inputs(At least 2)라는 파라미터 여부다.
  • 참고 1: tf.keras.layers.concatenate 공식 API 문서
  • 참고 2: tf.keras.layers.Concatenate 공식 API 문서
>>> model.summary()

Model: "model"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
deep_input (InputLayer)         [(None, 4)]          0                                            
__________________________________________________________________________________________________
hidden1 (Dense)                 (None, 30)           150         deep_input[0][0]                 
__________________________________________________________________________________________________
wide_input (InputLayer)         [(None, 5)]          0                                            
__________________________________________________________________________________________________
hidden2 (Dense)                 (None, 30)           930         hidden1[0][0]                    
__________________________________________________________________________________________________
concat (Concatenate)            (None, 35)           0           wide_input[0][0]                 
                                                                 hidden2[0][0]                    
__________________________________________________________________________________________________
output (Dense)                  (None, 1)            36          concat[0][0]                     
==================================================================================================
Total params: 1,116
Trainable params: 1,116
Non-trainable params: 0
__________________________________________________________________________________________________

 

 

 

 

5. 모델 학습 및 평가하기

# 모델 컴파일
model.compile(optimizer=Adam(learning_rate=0.005),
              loss = "msle",
              metrics=["accuracy"])

early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=30, restore_best_weights=True)

# 학습
history = model.fit((X_train_A, X_train_B), y_train,epochs=300,
                    validation_data=((X_valid_A, X_valid_B), y_valid),callbacks=[early_stop])
Epoch 1/300
362/362 [==============================] - 2s 5ms/step - loss: 0.1601 - accuracy: 0.0015 - val_loss: 0.0413 - val_accuracy: 0.0028
Epoch 2/300
362/362 [==============================] - 1s 1ms/step - loss: 0.0390 - accuracy: 0.0018 - val_loss: 0.0376 - val_accuracy: 0.0028
Epoch 3/300
362/362 [==============================] - 0s 1ms/step - loss: 0.0367 - accuracy: 0.0017 - val_loss: 0.0364 - val_accuracy: 0.0028
Epoch 4/300
362/362 [==============================] - 0s 1ms/step - loss: 0.0342 - accuracy: 0.0022 - val_loss: 0.0354 - val_accuracy: 0.0028

...

Epoch 277/300
362/362 [==============================] - 1s 1ms/step - loss: 0.0256 - accuracy: 0.0029 - val_loss: 0.0291 - val_accuracy: 0.0028
Epoch 278/300
362/362 [==============================] - 1s 1ms/step - loss: 0.0247 - accuracy: 0.0020 - val_loss: 0.0290 - val_accuracy: 0.0028
Epoch 279/300
362/362 [==============================] - 0s 1ms/step - loss: 0.0258 - accuracy: 0.0027 - val_loss: 0.0295 - val_accuracy: 0.0028
Epoch 280/300
362/362 [==============================] - 0s 1ms/step - loss: 0.0256 - accuracy: 0.0019 - val_loss: 0.0288 - val_accuracy: 0.0028
>>> model.evaluate((X_test_A, X_test_B), y_test)
194/194 [==============================] - 0s 753us/step - loss: 0.0300 - accuracy: 0.0040
[0.02998056262731552, 0.004037467762827873]
def Drawing_Scalars(history_name):
    
    history_DF = pd.DataFrame(history_name.history)
    # 그래프의 크기와 선의 굵기를 설정해주었다.
    history_DF.plot(figsize=(12, 8), linewidth=3)

    # 교차선을 그린다.
    plt.grid(True)

    plt.legend(loc = "upper right", fontsize =15)

    plt.title("Learning Curve", fontsize=30, pad = 30)
    plt.xlabel('Epoch', fontsize = 20, loc = 'center', labelpad = 20)
    plt.ylabel('Variable', fontsize = 20, rotation = 0, loc='center', labelpad = 40)

    # 위 테두리 제거
    ax=plt.gca()
    ax.spines["right"].set_visible(False) # 오른쪽 테두리 제거
    ax.spines["top"].set_visible(False) # 위 테두리 제거
    
    plt.show()
    
    
Drawing_Scalars(history)

  • 이전 포스트에서는 모든 데이터 셋을 Wide model과 Deep model에 넣었을 때는 Accuracy: 0.0034, Loss: 0.0242, epochs: 63에서 학습이 끝났으나, 이번 방법으로는 Accuracy: 0.0040, Loss: 0.0300, epochs: 280으로 기대에 미치는 성능이 나오진 않았다.
  • 학습에 대한 평가는 큰 차이가 없으나, 도리어 epochs가 63에서 280으로 학습 시간이 크게 늘어, 성능이 도리어 크게 떨어진 모습을 보여주었다.

 

 

 

 

6. 위 문제를 해결해보자.

  • 조기종료가 된 epochs가 63에서 280으로 증가했다는 소리는 주어진 데이터 셋이 이전보다 적합하지 않아, 학습하는데 시간이 오래 걸렸다는 소리다.
  • 그렇다면, 위에서 보았던 독립변수의 데이터 분포(히스토그램)와 독립변수와 종속변수의 상관관계(산점도)로 데이터 패턴의 단순한 정도를 본 방법이 틀린 것일까?
  • 앞서 우리가 학습하였던, "Tensorflow-4.0. 다층 퍼셉트론을 이용한 회귀모형 만들기"에서 회귀모형(Regression model)은 독립변수와 종속변수 간에 어떠한 경향성이 있다는 전제하에 독립변수가 변할 때, 종속변수가 변하고 이를 가장 잘 나타내는 계수를 찾는 것이 목적이라고 했다.
  • 딥러닝 역시 회귀모형의 원리와 매우 유사하게 돌아가므로, 이번에는 독립변수와 종속변수의 산점도(상관관계)에서 어떠한 경향성도 갖지 않는 "HouseAge", "AveRooms", "AveBedrms", "Population", "AveOccup", "Latitude", "Longitude" 모두를 Wide model에 넣고, 약한 선형 관계를 보이는 "MedInc"만 Deep model에 넣어보도록 하겠다.
# Dataset 생성
# 데이터를 쪼개기 좋게 변수의 순서를 바꾸자
CaliFornia_DF = CaliFornia_DF[["HouseAge", "Population", "Latitude", "Longitude", "MedInc",
                               "AveRooms", "AveBedrms", "AveOccup"]]

# train, validation, test set으로 쪼갠다.
X_train_all, X_test, y_train_all, y_test = train_test_split(CaliFornia_DF.values, Rawdict.target, test_size = 0.3)
X_train, X_valid, y_train, y_valid = train_test_split(X_train_all, y_train_all, test_size = 0.2)

# 정규화시킨다.
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid)
X_test = scaler.transform(X_test)

# 데이터 셋을 input layer의 수만큼 쪼갠다.
X_train_A, X_train_B = X_train[:, :1], X_train[:,1:]
X_valid_A, X_valid_B = X_valid[:, :1], X_valid[:,1:]
X_test_A, X_test_B = X_test[:, :1], X_test[:,1:]
# Model 
input_A = Input(shape=[1], name = "deep_input")
input_B = Input(shape=[7], name = "wide_input")
hidden1 = Dense(30, activation="relu", name = "hidden1")(input_A)
hidden2 = Dense(30, activation="relu", name = "hidden2")(hidden1)
concat = concatenate([input_B, hidden2], name = "concat")
output = Dense(1, name="output")(concat)
model = keras.Model(inputs=[input_A, input_B], outputs=[output])


# 모델 컴파일
model.compile(optimizer=Adam(learning_rate=0.005),
              loss = "msle",
              metrics=["accuracy"])

early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=30, restore_best_weights=True)

# 학습
history = model.fit((X_train_A, X_train_B), y_train,epochs=300,
                    validation_data=((X_valid_A, X_valid_B), y_valid),callbacks=[early_stop])
Epoch 1/300
362/362 [==============================] - 2s 5ms/step - loss: 0.2047 - accuracy: 0.0032 - val_loss: 0.0548 - val_accuracy: 0.0014
Epoch 2/300
362/362 [==============================] - 1s 1ms/step - loss: 0.0520 - accuracy: 0.0031 - val_loss: 0.0470 - val_accuracy: 0.0014
Epoch 3/300
362/362 [==============================] - 1s 2ms/step - loss: 0.0477 - accuracy: 0.0036 - val_loss: 0.0451 - val_accuracy: 0.0014
Epoch 4/300
362/362 [==============================] - 1s 2ms/step - loss: 0.0439 - accuracy: 0.0041 - val_loss: 0.0443 - val_accuracy: 0.0014

...

Epoch 46/300
362/362 [==============================] - 0s 1ms/step - loss: 0.0438 - accuracy: 0.0019 - val_loss: 0.0438 - val_accuracy: 0.0014
Epoch 47/300
362/362 [==============================] - 0s 1ms/step - loss: 0.0446 - accuracy: 0.0036 - val_loss: 0.0439 - val_accuracy: 0.0014
Epoch 48/300
362/362 [==============================] - 0s 1ms/step - loss: 0.0446 - accuracy: 0.0033 - val_loss: 0.0444 - val_accuracy: 0.0014
Epoch 49/300
362/362 [==============================] - 0s 1ms/step - loss: 0.0430 - accuracy: 0.0029 - val_loss: 0.0440 - val_accuracy: 0.0014
>>> model.evaluate((X_test_A, X_test_B), y_test)
194/194 [==============================] - 0s 966us/step - loss: 0.0468 - accuracy: 0.0024
[0.04679189994931221, 0.002422480611130595]

>>> Drawing_Scalars(history)

  • Deep model로는 1개의 변수만 집어넣었고, Wide model로 7개 변수를 넣었더니, Accuracy: 0.0024, Loss: 0.0468, epochs: 49(EarlyStopping의 patience인자가 30이므로, 실제 수렴은 epoch 19에서 한 것을 알 수 있다)로 수렴하였다.
  • 모든 변수를 Deep model과 Wide model로 보내는 경우, Accuracy: 0.0034, Loss: 0.0242, epochs: 63으로, 정확도가 미미한 수준으로 더 좋아졌고, 수렴 속도가 보다 빨라졌으나, 큰 차이가 있진 않다.
  • Deep Learning은 아주 많은 양의 데이터가 있을 때, 그 안에 우리가 인식하지 못하는 패턴을 찾아내는 것이므로, 위와 같은 밀집 특징(Dense Feature)에 대해서는 모든 데이터를 넣는 것을 추천한다.
  • 희소 특징(Sparse Feature)은 Deep model을 통과하며, 학습이 제대로 이루어지지 않을 수 있으므로, Wide model에는 희소 특징만 넣도록 하자.

 

 

 

 

7. 참고 - 일반적인 다중 입력 모델의 사용 예

  • 위 그림처럼 다중 입력은, 전혀 다른 데이터 셋 들로부터 하나의 결과를 도출해낼 수도 있다.
  • 예를 들어, 물건 판매 웹사이트 사용자들에 대해 패턴을 뽑고자 한다면, 사용자들의 정보는 Dense 모델로, 사용자의 제품 후기는 RNN 모델로, 사용자의 관심 있는 제품 사진들을 CNN 모델로 학습시키고 이를 하나로 합쳐 하나의 결괏값을 뽑아낼 수도 있다.

 

 

[참고 자료]

arxiv.org/abs/1606.07792

 

Wide & Deep Learning for Recommender Systems

Generalized linear models with nonlinear feature transformations are widely used for large-scale regression and classification problems with sparse inputs. Memorization of feature interactions through a wide set of cross-product feature transformations are

arxiv.org

ai.googleblog.com/2016/06/wide-deep-learning-better-together-with.html

 

Wide & Deep Learning: Better Together with TensorFlow

Posted by Heng-Tze Cheng, Senior Software Engineer, Google Research The human brain is a sophisticated learning machine, forming rules by me...

ai.googleblog.com

 

 

 지금까지 Wide & Deep Learning model을 Input Layer를 2개로 하여 다중 입력 모델로 만들어보았다. Keras API로 모델을 만드는 경우, 위처럼 쉬운 방법으로 다중 입력, 다중 출력 모델을 만들 수 있으므로, Keras로 모델을 만들 땐, 가능한 API로 만들도록 하자.

 지금까지 Wide & Deep Learning model의 개념을 어느 정도 알아보았으니, 다음 포스트에서는 좀 더 가볍게 해당 모델로 다중 입력, 다중 출력 모델을 만들어보도록 하겠다.

728x90
반응형
728x90
반응형

 이전 포스트에서 다뤘던 선형 회귀 모형은 단일 입력층과 단일 출력층을 갖는 형태였다. 그러나, Keras를 사용하는 Tensorflow의 가장 큰 장점인 함수형 API모델을 사용하면, 다중 입력과 다중 출력을 갖는 모델을 만들 수 있다.

이번 포스트에서는 Keras의 장점인 함수형 API로 대규모 회귀 및 분류 모델에서 주로 사용되는 Wide & Deep Learning 모델을 만들어보자.

 

 

와이드 & 딥(Wide & Deep) 신경망

  • 2016년 헝쯔 청(Heng-Tze Cheng et al.)의 논문에 소개된 신경망이다.
    Heng-Tze Cheng et al., "Wide & Deep Learning for Recommender Systems." Proceedings of the First Workshop on Deep Learning for Recommender Systems (2016): 7 - 10. http://homl.info/widedeep
  • 인간은 일반화와 암기를 통해 학습을 한다.

  • 일반화(Deep Models): 인간은 "참새는 날 수 있다.", "비둘기는 날 수 있다."를 통해 "날개를 가진 동물은 날 수 있다"라 일반화를 시킨다.
  • 암기(Wide Models): 반면에 "펭귄은 날 수 없다.", "타조는 날 수 없다." 등과 같은 예외 사항을 암기하여, 일반화된 규칙을 더욱 세분화시킨다.
  • Wide & Deep Learning은 이러한 인간의 일반화와 암기를 결합하여 학습하는 점에 착안하여, 만들어진 기계 학습 방법이다.
  • 앞서 우리가 학습해왔던 심층 신경망(Deep Network)은 대상으로부터 공통된 패턴을 찾아내어 일반화시키지만, 그 패턴을 가지고 있으나, 이에 해당하지 않는 많은 반례들이 존재한다.
    (일반적으로 딥 러닝에서는 이를 감안한 데이터 셋을 준비해 학습한다.)
  • Wide & Deep Learning은 여기서 더 나아가 넓은 선형 모델을 공동으로 학습시켜, 일반화(Deep Learning)와 암기(Wide Linear model)의 장점을 얻는다.
  • Wide & Deep Learning은 추천 시스템, 검색 및 순위 문제 같은 많은 양의 범주형 특징(Categorical Feature)이 있는 데이터를 사용하는 대규모 회귀, 분류 모델에서 유용하게 사용된다.
  • Wide & Deep Learning은 위 그림처럼 앞서 학습했던 다층 퍼셉트론(MLP - Deep way)에 입력 데이터의 일부 또는 전체 데이터가 출력층에 바로 연결(Wide way)되는 부분이 추가된 것이다.
  • 이로 인해, Wide & Deep Learning은 복잡한 패턴과 간단한 규칙을 모두 학습할 수 있다.
    (MLP에서는 간단한 패턴이 연속된 변환으로 인해 왜곡될 수 있다.)

 

 

 

 

1. Tensorflow의 함수형 API를 사용하여 Wide & Deep Learning을 구현해보자.

  • sklearn에서 제공하는 캘리포니아 주택 가격 데이터 셋을 사용해보자.
  • sklearn에서 제공하는 기초 함수로 데이터 셋을 분리해보자.
  • sklearn에서 제공하는 기초 함수로 데이터 셋의 스케일 조정을 실시해보자.

  • Wide model과 Deep model이 같은 데이터를 바라보는 Input이 1개인 Wide & Deep Learning Model을 만들어보자.

1.1 데이터셋 준비

# import Module
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import pandas as pd
# 캘리포니아 주택 가격 데이터 셋 확인
Rawdict = fetch_california_housing()

Cal_DF = pd.DataFrame(Rawdict.data, columns=Rawdict.feature_names)
Cal_DF

# Data의 모든 컬럼들의 data type을 확인한다.
>>> Cal_DF.dtypes
MedInc        float64
HouseAge      float64
AveRooms      float64
AveBedrms     float64
Population    float64
AveOccup      float64
Latitude      float64
Longitude     float64
dtype: object


# Data의 모든 컬럼들의 결측값 개수를 확인한다.
>>> Cal_DF.isnull().sum()
MedInc        0
HouseAge      0
AveRooms      0
AveBedrms     0
Population    0
AveOccup      0
Latitude      0
Longitude     0
dtype: int64
  • 데이터 셋은 모두 소수(float64)로 구성되어 있다.
  • 결측 값은 모든 칼럼에 존재하지 않는다.

1.2 데이터셋 분리

>>> X_train_all, X_test, y_train_all, y_test = train_test_split(Rawdict.data, Rawdict.target, test_size = 0.3)
>>> X_train, X_valid, y_train, y_valid = train_test_split(X_train_all, y_train_all, test_size = 0.2)
>>> print("Train set shape:", X_train.shape)
>>> print("Validation set shape:", X_valid.shape)
>>> print("Test set shape:", X_test.shape)

Train set shape: (11558, 8)
Validation set shape: (2890, 8)
Test set shape: (6192, 8)
  • sklearn.model_selection.train_test_split(array, test_size, shuffle): dataset을 쉽게 나눌 수 있는 sklearn 함수로 일반적으로 dataset, label 이 두 array를 동시에 넣고 사용한다.
  • test_size: test Dataset의 비율(float)이나 총 숫자(int)로 나눠준다.
  • shuffle: Dataset을 쪼개기 전에 섞을지 여부를 정해준다.

1.3. 데이터셋 스케일 조정

# 스케일 조정
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid)
X_test = scaler.transform(X_test)
  • sklearn.preprocessing.StandardScaler(): 표준 정규분포로 스케일링할 준비를 한다.
  • sklearn.prepocessing은 이밖에도 MinMaxScaler, MaxAbsScaler, RobustScaler 등 다양한 스케일링 기법을 제공한다.
  1. MinMaxScaler(): 최소-최대 스케일 변환, 이상치 영향이 크다.
  2. MaxAbsScaler(): 최대 절대 값을 1로 변환(-1.0 ~ 1.0으로 만드나, 전부 양수인 경우, MinMaxscaler와 동일하다), 이상치 영향이 크다.
  3. StandardScaler(): 표준 정규분포 스케일 변환
  4. RobustScaler(): 중앙값과 사분위 범위(Interquartile range)를 사용하며, StandardScaler보다 표준화 후 동일한 값을 더 넓게 분포 시킴

 

  • StandardScaler().fit_transform(): 데이터셋을 표준 정규분포화 한다. 단, fit_transform에 들어가는 Dataset의 평균과 표준편차를 기준으로 저장하게 된다.
  • StandardScaler().transform(): 데이터셋을 표준 정규분포화 한다. 표준 정규분포화하는 평균과 표준편차는 fit 된 Dataset을 따른다.
  • 앞서 학습하였듯, 스케일링 조정의 기준은 훈련 셋(Train set)이다. 그러므로, fit_transform()에는 Train set이 들어가야 하고, transform에는 검증 셋(Validation set)이나 시험 셋(Test set)이 들어가야 한다.

 

 

 

 

2. 모델 만들기

  • Wide & Deep Learning 같은 순차적이지 않은 신경망을 만들기 위해선 keras의 특징인 함수형 API를 이용해서 Layer를 만들어야 한다.
  • 이번 모델은 1개의 Input Layer와 1개의 Output Layer를 갖는 Wide-Deep Learning 모델을 만들어보겠다.
from tensorflow import keras
from tensorflow.keras.layers import (Input, Dense, Concatenate)
# Model 생성하기
input_ = Input(shape=X_train.shape[1:])
hidden1 = Dense(30, activation="relu")(input_)
hidden2 = Dense(30, activation="relu")(hidden1)
concat = Concatenate()([input_, hidden2])
output = Dense(1)(concat)
model = keras.Model(inputs=[input_], outputs=[output])
  • 함수형 API 모델 생성 방법
  1. Input 객체 생성: Input layer는 배치 크기를 포함하지 않는, array의 모양을 정한다. 즉, Data의 크기가 아닌, 한 Row의 Data의 모양만 반영된다. 예를 들어, shape = (32,)가 되면, 32차원의 벡터가 입력된다는 의미다.
    (변수 이름에 _가 들어간 것은 파이썬에서 언더스코어(_)의 기능을 이용한 것으로, 단순하게 input함수와 충돌되지 않도록 이렇게 만든 것이다.)
  2. 은닉층 객체 생성: 기존처럼 Layer를 add로 만들어진 모델에 은닉층을 쌓는 것이 아닌, 함수로 만들어 변수에 담는다. 여기서 케라스에서 층이 연결될 방법만 선언하였고, 그 어떤 데이터 처리도 발생하지 않은 상태이다.
  3. 결합층 객체 생성: Wide-Deep Learning은 선형 모델과 딥러닝 모델을 동시에 사용하는 방법이므로, 입력될 객체인 input_과 hidden2를 연결해준다.
  4. 출력층 객체 생성: 결합층에서 전달된 내용을 출력함
  5. 모델 생성: 입력과 출력이 지정된 Keras 모델 생성
  • tf.keras.layers.Concatenate(): 연결층이 Tensor를 연결하는 방법은 아래와 같다.
>>> x = np.arange(1, 41, 2).reshape(2,2,5)
>>> x
array([[[ 1,  3,  5,  7,  9],
        [11, 13, 15, 17, 19]],

       [[21, 23, 25, 27, 29],
        [31, 33, 35, 37, 39]]])


>>> y = np.arange(2, 21, 2).reshape(2,1,5)
>>> y
array y:
 [[[ 2  4  6  8 10]]

 [[12 14 16 18 20]]]


>>> tf.keras.layers.Concatenate(axis=1)([x, y])
<tf.Tensor: shape=(2, 3, 5), dtype=int32, numpy=
array([[[ 1,  3,  5,  7,  9],
        [11, 13, 15, 17, 19],
        [ 2,  4,  6,  8, 10]],

       [[21, 23, 25, 27, 29],
        [31, 33, 35, 37, 39],
        [12, 14, 16, 18, 20]]])>
   
   
>>> np.concatenate((x, y), axis=1)
array([[[ 1,  3,  5,  7,  9],
        [11, 13, 15, 17, 19],
        [ 2,  4,  6,  8, 10]],

       [[21, 23, 25, 27, 29],
        [31, 33, 35, 37, 39],
        [12, 14, 16, 18, 20]]])
  • tf.keras.layers.Concatenate()는 np.concatenate() 함수와 동일한 역할을 하며, axis를 어떻게 잡느냐에 따라, 출력되는 Tensor의 모양을 다르게 할 수 있다.

 

 

 

 

3. 모델 학습 및 최종 코드 정리

  • 지금까지 작성했던 코드와 이전에 사용했던 괜찮은 기능들을 합쳐 코드를 정리해보자.
# Import Module
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import callbacks
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import (Input, Dense, Concatenate)
# Dataset 생성
Rawdict = fetch_california_housing()
X_train_all, X_test, y_train_all, y_test = train_test_split(Rawdict.data, Rawdict.target, test_size = 0.3)
X_train, X_valid, y_train, y_valid = train_test_split(X_train_all, y_train_all, test_size = 0.2)

# 스케일 조정
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid)
X_test = scaler.transform(X_test)
# 모델 생성
input_ = Input(shape=X_train.shape[1:])
hidden1 = Dense(30, activation="relu")(input_)
hidden2 = Dense(30, activation="relu")(hidden1)
concat = Concatenate()([input_, hidden2])
output = Dense(1)(concat)
model = keras.Model(inputs=[input_], outputs=[output])

# 모델 컴파일
model.compile(optimizer=Adam(learning_rate=0.005),
              loss = "msle",
              metrics=["accuracy"])
# 학습
early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=30, restore_best_weights=True)

history = model.fit(X_train, y_train, 
                    epochs=100,
                    batch_size=32,
                    validation_data=(X_valid, y_valid),
                    callbacks=[early_stop])
Epoch 1/100
362/362 [==============================] - 3s 5ms/step - loss: 0.1195 - accuracy: 0.0031 - val_loss: 0.0360 - val_accuracy: 0.0014
Epoch 2/100
362/362 [==============================] - 1s 1ms/step - loss: 0.0340 - accuracy: 0.0031 - val_loss: 0.0342 - val_accuracy: 0.0014
Epoch 3/100
362/362 [==============================] - 1s 1ms/step - loss: 0.0329 - accuracy: 0.0027 - val_loss: 0.0326 - val_accuracy: 0.0014
Epoch 4/100
362/362 [==============================] - 0s 1ms/step - loss: 0.0336 - accuracy: 0.0034 - val_loss: 0.0321 - val_accuracy: 0.0014

...

Epoch 60/100
362/362 [==============================] - 0s 1ms/step - loss: 0.0219 - accuracy: 0.0045 - val_loss: 0.0263 - val_accuracy: 0.0014
Epoch 61/100
362/362 [==============================] - 0s 1ms/step - loss: 0.0221 - accuracy: 0.0033 - val_loss: 0.0285 - val_accuracy: 0.0014
Epoch 62/100
362/362 [==============================] - 0s 1ms/step - loss: 0.0244 - accuracy: 0.0033 - val_loss: 0.0267 - val_accuracy: 0.0010
Epoch 63/100
362/362 [==============================] - 0s 1ms/step - loss: 0.0227 - accuracy: 0.0032 - val_loss: 0.0264 - val_accuracy: 0.0010
>>> model.evaluate(X_test, y_test)
194/194 [==============================] - 0s 750us/step - loss: 0.0242 - accuracy: 0.0034
[0.02424260601401329, 0.0033914728555828333]
def Drawing_Scalars(history_name):
    
    history_DF = pd.DataFrame(history_name.history)
    # 그래프의 크기와 선의 굵기를 설정해주었다.
    history_DF.plot(figsize=(12, 8), linewidth=3)

    # 교차선을 그린다.
    plt.grid(True)

    plt.legend(loc = "upper right", fontsize =15)

    plt.title("Learning Curve", fontsize=30, pad = 30)
    plt.xlabel('Epoch', fontsize = 20, loc = 'center', labelpad = 20)
    plt.ylabel('Variable', fontsize = 20, rotation = 0, loc='center', labelpad = 40)

    # 위 테두리 제거
    ax=plt.gca()
    ax.spines["right"].set_visible(False) # 오른쪽 테두리 제거
    ax.spines["top"].set_visible(False) # 위 테두리 제거
    
    plt.show()
    
    
Drawing_Scalars(history)

  • 위 모델의 학습 결과를 보면, accuracy는 빠르게 0에 가깝게 떨어진 것을 볼 수 있다.
  • model.evaluate()에서 test set을 대상으로 모델을 평가한 결과 Accuracy는 0.0034가 나왔다.
  • 분류 모델을 사용할 때와, 위와 같은 연속형 데이터에 대한 회귀 모델은 Accuracy의 기준이 다르므로, 위 경우엔 Accuracy, loss 모두 0에 가깝게 나오는 것이 좋다.
  • 참고자료: "머신러닝-5.2. 손실함수(3)-평균제곱근오차(RMSE)"
  • loss는 model.evaluate()에서 0.0242로 최종 손실 값이 0에 가깝게는 나왔으나, 기존 모델보다는 크게 나왔다. 그러나, 손실 값은 상대적인 기준이므로, 0에 가까울수록 좋은 것이긴 하나, 단순하게 나쁘게 봐서는 안된다.

 

[참고 자료]

arxiv.org/abs/1606.07792

 

Wide & Deep Learning for Recommender Systems

Generalized linear models with nonlinear feature transformations are widely used for large-scale regression and classification problems with sparse inputs. Memorization of feature interactions through a wide set of cross-product feature transformations are

arxiv.org

ai.googleblog.com/2016/06/wide-deep-learning-better-together-with.html

 

Wide & Deep Learning: Better Together with TensorFlow

Posted by Heng-Tze Cheng, Senior Software Engineer, Google Research The human brain is a sophisticated learning machine, forming rules by me...

ai.googleblog.com

 

 

 

 지금까지 Input layer가 1개인 Wide & Deep Learning model을 만들어보았다. 그러나, Wide & Deep Learning model의 가장 큰 특징은 Input 되는 층이 지금까지처럼 1개의 동일한 Layer가 아니라, 암기(Linear Learning)를 위한 데이터와 일반화(Deep Learning)를 위한 데이터가 Input 될 층을 따로 구성될 수 있다는 것이다.

 다음 포스트에서는 Input layer가 2개인 경우에 대하여 Wide & Deep Learning model을 만들어보면서, Wide & Deep Learning model에 대해 더 알아보도록 하자.

728x90
반응형
728x90
반응형

 꽤 많은 블로그나 책에서 머신러닝을 다룰 때, 회귀모형, 로지스틱 회귀모형을 꼭 다루고 넘어가는데, 이번 포스트에서는 우리가 통계학에서 흔히 다루는 회귀모형과 딥러닝이 대체 어떤 관계길래 다들 회귀모형부터 다루는지에 대해 알아보고자 한다.

 사실 우리는 이미 이전 포스트에서 회귀모형, 로지스틱 회귀모형을 만들어보았으며, 만약, 통계에 조금 익숙한 사람이라면, 분석된 결과나 그 과정을 보면서, 이게 회귀분석 아닌가? 하는 생각이 들었을지도 모른다(물론, Odd Ratio, $R^2$과 같은 익숙한 지표들이 그대로 등장하진 않았지만, 그것과 유사한 역할을 하는 지표를 이미 봤을 것이다).

 

 

회귀모형(Regression Model)

 통계에 익숙한 사람이라면, 통계의 꽃인 회귀 모형에 대해 이미 잘 알고 있을 것이다. 우리가 기존에 학습했던, "Tensorflow-1.4. 기초(5)-하이퍼 파라미터 튜닝", "Tensorflow-2.4. 타이타닉 생종자 분류 모델(3)-하이퍼 파라미터 튜닝"에서 만들었던 모델이 바로 회귀모형이다.

 

 

 

 

1. 통계학과 딥러닝의 회귀모형

 회귀모형에 대해 잘 모를 수 있으므로, 통계학에서의 회귀모형에 대해 아주 단순하게 설명해보도록 하겠다.

  • 회귀모형은 데이터 간에 어떠한 경향성이 있다는 생각에서 시작된다.
  • 회귀모형은 독립변수와 종속변수가 서로 인과 관계가 있다고 할 때, 독립변수가 변하면 종속변수가 변하게 된다.

회귀식: $ y = b_1x_1 + b_2x_2 + b_3x_3 + c $

  • 회귀모형은 데이터에 가장 적합한 계수($b_1, b_2, b_3, c$)를 구하는 것이 목적이다.
  • 회귀모형은 그 적합한 계수를 찾는 방법으로 평균 제곱 오차(MSE)를 사용한다.
    (실제값과 예측값의 편차 제곱의 평균, 참고: "딥러닝-5.1. 손실함수(2)-평균제곱오차(MSE)")

 회귀식은 퍼셉트론 공식과 아주 똑 닮았다("머신러닝-2.1. 퍼셉트론(2)-논리회로"). 그리고 딥러닝을 통해 우리는 각각의 파라미터(가중치와 편향)를 찾아낼 수 있다.

 독립변수(Dataset이자 상수)의 변화에 따른 종속변수(Label, 상수)의 변화를 가장 잘 설명할 수 있는 계수(weight과 bias)를 찾아내는 것은 회귀분석이며, 이 점이 다층 퍼셉트론을 이용하여, 데이터 자체를 가장 잘 설명할 수 있는 파라미터를 찾아내는 딥러닝(Deep Learning)과 같다고 할 수 있다.

1.1. 이 밖의 회귀모형의 특징

  • 회귀모형은 기본적으로 연속형 데이터를 기반으로 한다.
  • 독립변수, 종속변수가 모두 연속형 데이터여야 한다.
  • 연속형 데이터가 아닌 독립변수 존재 시, 이를 가변수(Dummy variable)로 만든다.

 

 

 

 

2. 데이터셋

 이번 학습에서는 R을 사용해본 사람이라면 아주 친숙한 데이터 중 하나인 자동차 연비 데이터(MPG)를 이용해서 회귀모형을 만들어보도록 하겠다.

# Import Module
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from sklearn.model_selection import train_test_split

import pandas as pd
import numpy as np
>>> dataset_path = keras.utils.get_file("auto-mpg.data", "http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data")
Downloading data from http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data
32768/30286 [================================] - 0s 4us/step
  • tf.keras.utils.get_file()을 사용하면, 각종 데이터셋을 쉽게 가져올 수 있다.
  • 데이터셋을 가지고 오는 곳은 UCI 머신러닝 저장소로 인터넷이 안 되는 환경이라면 데이터를 다운로드할 수 없으니, 조심하자.
  • sklearn처럼 데이터셋을 Dictionary에 깔끔하게 저장하여, 데이터를 다운로드하면, 모든 데이터에 대한 정보가 있는 상태가 아니므로, 데이터에 대해 파악하기 위해선 UCI 머신러닝 저장소에서 데이터에 대해 검색하여, 데이터 정보를 찾아봐야 한다.
  • 해당 포스팅에서는 "Tensorflow 공식 홈페이지의 자동차 연비 예측하기: 회귀"를 참고하여 데이터셋을 준비하였다.
column_names = ['MPG','Cylinders','Displacement','Horsepower','Weight',
                'Acceleration', 'Model Year', 'Origin']
Rawdata = pd.read_csv(dataset_path, names=column_names, na_values = "?",
                      comment='\t', sep=" ", skipinitialspace=True)
Rawdata

 

 

 

 

3. 데이터 전처리

3.1. 결측 값 처리

>>> Rawdata.isna().sum()
MPG             0
Cylinders       0
Displacement    0
Horsepower      6
Weight          0
Acceleration    0
Model Year      0
Origin          0
dtype: int64

>>> print("전체 데이터에서 결측값 행의 비율:", Rawdata.isna().sum(1).sum()/len(Rawdata))
전체 데이터에서 결측값 행의 비율: 0.01507537688442211
  • 위 결과를 보니, Horsepower에서 결측 값이 6개 발생한 것을 알 수 있다.
  • 전체 데이터에서 결측 값 행의 비율을 보니 0.015로 매우 미미한 양이므로, 제거하도록 하자.
Rawdata.dropna(inplace = True)

 

3.2. 범주형 데이터의 원-핫 벡터화

  • 칼럼 Origin은 숫자로 표시되어 있지만, 실제론 문자인 범주형 데이터이므로, 원-핫 벡터화 해주자.
    (이는 회귀 모델에서의 가변수 처리와 매우 유사한 부분이라고 할 수 있다.)
# One-Hot Vector 만들기
def make_One_Hot(data_DF, column):
    
    target_column = data_DF.pop(column)

    for i in sorted(target_column.unique()):

        new_column = column + "_" + str(i)
        data_DF[new_column] = (target_column == i) * 1.0
  • 이전 참고 포스트에서 만들었던, 원-핫 벡터 코드보다 판다스의 성격을 잘 활용하여 만든 코드다
  • DataFrame.pop(column): DataFrame에서 선택된 column을 말 그대로 뽑아낸다. 그로 인해 기존 DataFrame에서 해당 column은 사라지게 된다.
  • (target_column == i) * 1.0: Boolearn의 성질을 사용한 것으로 target_column의 원소를 갖는 위치는 True로, 원소가 없는 곳은 False가 된다. 이에 1.0을 곱하여 int로 바꿔줬다. Python은 동적 언어이므로, 1.0을 곱해주어도 int형으로 변하게 된다.

 

3.3. 데이터셋 분리

  • train set과 test set은 7:3으로 분리하도록 하겠다.
  • validation set은 이 단계에서 뽑지 않고, 학습 과정(fit)에서 뽑도록 하겠다.
  • MPG 변수는 연비를 의미하며 종속변수에 해당하므로, 이를 Label로 사용하겠다.
# Dataset 쪼개기
label = Rawdata.pop("MPG").to_numpy()
dataset = Rawdata.values
X_train, X_test, y_train, y_test = train_test_split(dataset, label, test_size = 0.3)

 

3.4. 특성 스케일 조정

  • 해당 데이터 셋의 각 칼럼의 데이터는 다른 변수에서 나온 것이므로, 각각 변수별 기준으로 정규화해주어야 한다.
  • 표준 정규 분포를 사용하여 특성 스케일 조정을 하도록 하겠다.
  • 원-핫 벡터가 사용된 7:9까지의 열을 제외한 나머지 열에 대해 각각 특성 스케일 조정을 하겠다.
# 특성 스케일 조절
mean_point = X_train[:, :6].mean(axis=0)
std_point = X_train[:, :6].std(axis=0)

X_train[:, :6] = ((X_train[:, :6] - mean_point)/std_point)
X_test[:, :6] = ((X_test[:, :6] - mean_point)/std_point)
  • Numpy의 특징 중 하나인 Broadcasting 덕에 쉽게 정규화할 수 있다.

 

 

 

 

4. 모델 학습 및 평가

  • 모델은 은닉층이 1개 있는 단층 퍼셉트론(Sigle-later Perceptron)으로 만들어보겠다.
    (은닉층을 2개 이상 넣어 다층 퍼셉트론으로 만들어도 상관없다)
  • model은 Sequential 함수 안에 layer를 넣어주는 방법으로 만들어보겠다.
    (추천하지는 않는 방법이지만 이런 방법도 있다는 것을 보여주고자 사용해보았다)
  • 출력층의 활성화 함수는 선형(Linear)으로 설정하였다.
    (activation의 Default는 linear이므로, 따로 설정하지 않아도 된다)
  • 조기 종료(Early stop)를 콜백 함수로 주도록 하겠다.
# model 생성
model = keras.Sequential([
    keras.layers.Dense(60, activation = "relu"),
    keras.layers.Dense(1, activation = "linear")
])

# model compile 설정
opt = keras.optimizers.Adam(learning_rate=0.005)
model.compile(optimizer=opt, loss="mse", metrics = ["accuracy"])

# model 학습
early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
model.fit(X_train, y_train, epochs=300, validation_split=0.2, callbacks=[early_stop])
Epoch 1/300
7/7 [==============================] - 2s 248ms/step - loss: 572.1581 - accuracy: 0.0000e+00 - val_loss: 497.8600 - val_accuracy: 0.0000e+00
Epoch 2/300
7/7 [==============================] - 0s 19ms/step - loss: 516.3237 - accuracy: 0.0000e+00 - val_loss: 443.4315 - val_accuracy: 0.0000e+00
Epoch 3/300
7/7 [==============================] - 0s 18ms/step - loss: 454.6065 - accuracy: 0.0000e+00 - val_loss: 385.6940 - val_accuracy: 0.0000e+00
Epoch 4/300
7/7 [==============================] - 0s 19ms/step - loss: 390.3198 - accuracy: 0.0000e+00 - val_loss: 321.7114 - val_accuracy: 0.0000e+00

...

Epoch 79/300
7/7 [==============================] - 0s 8ms/step - loss: 5.6932 - accuracy: 0.0000e+00 - val_loss: 7.2688 - val_accuracy: 0.0000e+00
Epoch 80/300
7/7 [==============================] - 0s 8ms/step - loss: 5.9354 - accuracy: 0.0000e+00 - val_loss: 7.3990 - val_accuracy: 0.0000e+00
Epoch 81/300
7/7 [==============================] - 0s 8ms/step - loss: 5.5025 - accuracy: 0.0000e+00 - val_loss: 7.3694 - val_accuracy: 0.0000e+00
Epoch 82/300
7/7 [==============================] - 0s 8ms/step - loss: 5.8313 - accuracy: 0.0000e+00 - val_loss: 7.2677 - val_accuracy: 0.0000e+00
<tensorflow.python.keras.callbacks.History at 0x1e00b62b1f0>
# model 평가
>>> model.evaluate(X_test, y_test)
4/4 [==============================] - 0s 2ms/step - loss: 10.2492 - accuracy: 0.0000e+00
[10.24919319152832, 0.0]

 

 

 

 

5. 정리

  • 출력층에 활성화 함수로 기본값인 선형 함수(Linear)가 사용되었다.
  • 활성화 함수로 선형 함수가 사용되는 경우, 단순하게 이전 층에서 출력된 값에 대하여 선형 함수의 계수 값만큼만 곱하므로, 은닉층에서의 값을 보존한 상태로 출력하게 된다.
  • 참고: "딥러닝-3.0. 활성화함수(1)-계단함수와 선형함수"
  • 손실 함수로 평균 제곱 오차(MSE)를 사용하였다.
  • 참고: "딥러닝-5.1. 손실함수(2)-평균제곱오차(MSE)"
  • 회귀모형은 주어진 데이터가 어떠한 경향성을 갖고 있다는 가정하에 변수들 사이의 경향성을 가장 잘 설명할 수 있는 계수들을 찾아내는 것이다.
  • 우리는 딥러닝 모델을 사용해서 Feature로 독립변수들을 넣었고, Label에 종속변수를 넣었다.
  • 우리는 딥러닝 모델을 이용해 Feature가 Label에 대한 어떠한 경향성, 즉 패턴을 갖고 있다고 보고, 그 패턴을 나타내는 파라미터(weight, bias)를 찾아냈다.
  • 회귀분석은 일반적으로 최소제곱법(OLS)을 통해 최적의 가중치를 찾아내지만, 우리는 최적의 가중치를 경사 하강법과 역전파를 통한 학습으로 찾아내었다.
  • 출력층의 활성화 함수를 Sigmoid 함수로 사용하여 이진 분류 하면, 로지스틱 회귀모형(Logistic Regression model)이 된다.

 

 

 

 지금까지 딥러닝(Deep Learning)을 사용하여, 회귀모델을 만들어보았다. 앞서 "딥러닝을 통해 이런 것도 되는구나!"하고 넘어갔던 부분들이 사실은 회귀모델이고, 회귀모델의 아이디어와 딥러닝의 아이디어의 유사한 부분에서 꽤 재미를 느꼈을 것이다.

 다음 포스트에서는 Keras의 장점인 함수형 API를 이용해 모델을 만들어, 얕은 신경망(Wide model)과 깊은 신경망(Deep model)을 합친 Wide & Deep Learning에 대해 학습해보도록 하겠다.

728x90
반응형
728x90
반응형

 지금까지 tensorflow.keras를 사용해서 일어나는 전반적인 과정에 대해 천천히 살펴보았다. 모델 평가는 하이퍼 파라미터 최적화(Hyper Parameter optimization)의 개념으로 들어가게 되면, 그 양이 꽤 길어지므로, 거기까진 나중에 따로 들어가도록 하겠다.

 이번 포스트에서는 지금까지 학습했던 내용들을 정리하고, .evaluate() 함수로 지금까지 만들었던 모델의 성능을 평가한 후, 모델을 저장 및 불러오기를 해보도록 하겠다.

 

 

1. 학습 코드 최종 정리 및 모델 평가

# Import module
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import (Dense, BatchNormalization, Dropout, Flatten)
from tensorflow.keras.datasets.mnist import load_data

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Dataset 준비
(train_images, train_labels), (test_images, test_labels)= load_data()

# 무작위로 샘플 추출
np.random.seed(1234)
index_list = np.arange(0, len(train_labels))
valid_index = np.random.choice(index_list, size = 5000, replace = False)

# 검증셋 추출
valid_images = train_images[valid_index]
valid_labels = train_labels[valid_index]

# 학습셋에서 검증셋 제외
train_index = set(index_list) - set(valid_index)
train_images = train_images[list(train_index)]
train_labels = train_labels[list(train_index)]

# min-max scaling
min_key = np.min(train_images)
max_key = np.max(train_images)

train_images = (train_images - min_key)/(max_key - min_key)
valid_images = (valid_images - min_key)/(max_key - min_key)
test_images = (test_images - min_key)/(max_key - min_key)





# 모델 생성
model = keras.models.Sequential()
model.add(keras.layers.Flatten(input_shape=[28, 28], name="Flatten"))
model.add(Dense(300, activation="relu", name="Hidden1"))
model.add(Dense(200, activation="relu", name="Hidden2"))
model.add(Dense(100, activation="relu", name="Hidden3"))
model.add(Dense(10, activation="softmax", name="Output"))





# 모델 컴파일
opt = keras.optimizers.Adam(learning_rate=0.005)
model.compile(optimizer = opt,
              loss = "sparse_categorical_crossentropy",
              metrics = ["accuracy"])
              
              
              
              
              
early_stop = keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=10, restore_best_weights=True)
history = model.fit(train_images, train_labels,
                    epochs=100,
                    batch_size=5000,
                    validation_data=(valid_images, valid_labels),
                    callbacks=[early_stop])
Epoch 1/100
11/11 [==============================] - 2s 162ms/step - loss: 1.4978 - accuracy: 0.4962 - val_loss: 0.4193 - val_accuracy: 0.8836
Epoch 2/100
11/11 [==============================] - 1s 53ms/step - loss: 0.3403 - accuracy: 0.9037 - val_loss: 0.2377 - val_accuracy: 0.9270
Epoch 3/100
11/11 [==============================] - 1s 58ms/step - loss: 0.2092 - accuracy: 0.9373 - val_loss: 0.1695 - val_accuracy: 0.9480
Epoch 4/100
11/11 [==============================] - 1s 51ms/step - loss: 0.1490 - accuracy: 0.9554 - val_loss: 0.1303 - val_accuracy: 0.9590
Epoch 5/100
11/11 [==============================] - 1s 52ms/step - loss: 0.1113 - accuracy: 0.9664 - val_loss: 0.1108 - val_accuracy: 0.9632

...

Epoch 19/100
11/11 [==============================] - 1s 47ms/step - loss: 0.0034 - accuracy: 0.9996 - val_loss: 0.0777 - val_accuracy: 0.9800
Epoch 20/100
11/11 [==============================] - 1s 47ms/step - loss: 0.0024 - accuracy: 0.9998 - val_loss: 0.0782 - val_accuracy: 0.9790
Epoch 21/100
11/11 [==============================] - 1s 52ms/step - loss: 0.0016 - accuracy: 1.0000 - val_loss: 0.0784 - val_accuracy: 0.9786
Epoch 22/100
11/11 [==============================] - 1s 52ms/step - loss: 0.0012 - accuracy: 0.9999 - val_loss: 0.0816 - val_accuracy: 0.9794
Epoch 23/100
11/11 [==============================] - 1s 47ms/step - loss: 0.0012 - accuracy: 0.9999 - val_loss: 0.0813 - val_accuracy: 0.9796
# 모델 평가
>>> model.evaluate(test_images, test_labels)
313/313 [==============================] - 1s 2ms/step - loss: 0.0718 - accuracy: 0.9794
[0.07175429910421371, 0.9793999791145325]
  • model.evaluate(test_set, test_label): 시험 셋으로 생성된 모델을 최종 평가한다.
  • 위 모델은 정확도가 0.979로 굉장히 정확도가 높은 모델이 만들어졌다.
  • 이 evaluate의 accuracy를 기준으로 하이퍼 파라미터를 튜닝하는 경우가 꽤 많은데, 그렇게 되면 시험 셋에 최적화가 돼버릴 위험이 있다.
  • 이를 방지하기 위해, 시험 셋은 최종 평가의 수단으로만 쓰고, 검증 셋을 대신 사용하여, 최적화를 하여, 특정 데이터 셋에 최적화되는 현상은 피하도록 하자.
  • 이 하이퍼 파라미터 튜닝(Hyper Parameter Tuning)은 추후 자세히 다루도록 하겠다.

 

 

 

 

2. 모델 저장하기

  • 지금까지 힘들게 만든 모델은 지금 당장 사용할 수도 있지만, 나중에 사용할 수도 있기 때문에, 모델 저장과 불러오기를 할 수 있어야 한다.
model.save("MNIST_210217.h5")
  • model.save("저장하고자_하는_모델_이름.h5")
  • 위 방법 사용 시, 원하는 이름과 경로에 모델의 아키텍처와 파라미터가 저장되게 된다.

  • 저장되는 내용은 다음과 같다.
  1. 모델을 재구성하기 위한 모델의 구성 정보(모델 아키텍처)
  2. 재학습을 할 수 있도록 마지막 학습 상태
  3. 모델을 구성하는 각 뉴런의 파라미터

 

 

 

 

3. 모델 불러오기

MNIST_model = keras.models.load_model("MNIST_210217.h5")
  • 모델 불러오기는 keras.models.load_model("불러오고자_하는_파일_이름.h5") 로 쉽게 할 수 있다.
  • 모델에 데이터를 넣어 결과를 출력하는 방법은 다음과 같다.
>>> np.argmax(MNIST_model.predict(test_images), axis=-1)
array([7, 2, 1, ..., 4, 5, 6], dtype=int64)
  • 단순 예시를 위해 시험 셋을 넣은 것이며, 실제로는 만들어진 모델의 목적에 맞는 새로운 데이터 셋을 넣어야 한다.
  • 모델의 아키텍처는 summary를 이용해서 보도록 하자.
>>> MNIST_model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
Flatten (Flatten)            (None, 784)               0         
_________________________________________________________________
Hidden1 (Dense)              (None, 300)               235500    
_________________________________________________________________
Hidden2 (Dense)              (None, 200)               60200     
_________________________________________________________________
Hidden3 (Dense)              (None, 100)               20100     
_________________________________________________________________
Output (Dense)               (None, 10)                1010      
=================================================================
Total params: 316,810
Trainable params: 316,810
Non-trainable params: 0
_________________________________________________________________

 

 

 

 

 지금까지 Tensorflow를 사용해서 모델을 학습하는 과정을 세세히 들여다보았다. 지금까지 했던 부분에서 빼먹은 부분이 없는 것은 아니지만, 이는 앞으로 쭉 학습을 해나가면서 채워가도록 하겠다.

728x90
반응형
728x90
반응형

 지금까지 이미지 분류 모델을 만들고, 학습까지 시켜보았다. 지난 포스트에서는 학습 과정을 보며, 학습이 제대로 이루어졌는지를 평가하고, 최적의 epochs를 결정하는 방법에 대해 공부해보았다.

 그러나, 지금 같이 데이터의 양이 작고, epochs가 상대적으로 적은 경우엔 학습이 완전히 끝난 후 그래프를 그려서 학습 과정을 살필 수 있었지만, 만약에 epochs가 1,000 이거나 데이터의 크기가 1,000만 개를 가뿐히 넘겨 학습 시간이 길어지는 경우라면, 이전에 했던 방법으로 접근해서는 안된다.

 이때, 등장하는 개념이 바로 조기 종료다.

 

 

조기 종료(Early Stopping)

0. 선행 코드

# Import module
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import (Dense, BatchNormalization, Dropout, Flatten)
from tensorflow.keras.datasets.mnist import load_data

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Dataset 준비
(train_images, train_labels), (test_images, test_labels)= load_data()

# 무작위로 샘플 추출
np.random.seed(1234)
index_list = np.arange(0, len(train_labels))
valid_index = np.random.choice(index_list, size = 5000, replace = False)

# 검증셋 추출
valid_images = train_images[valid_index]
valid_labels = train_labels[valid_index]

# 학습셋에서 검증셋 제외
train_index = set(index_list) - set(valid_index)
train_images = train_images[list(train_index)]
train_labels = train_labels[list(train_index)]

# min-max scaling
min_key = np.min(train_images)
max_key = np.max(train_images)

train_images = (train_images - min_key)/(max_key - min_key)
valid_images = (valid_images - min_key)/(max_key - min_key)
test_images = (test_images - min_key)/(max_key - min_key)





# 모델 생성
model = keras.models.Sequential()
model.add(keras.layers.Flatten(input_shape=[28, 28], name="Flatten"))
model.add(Dense(300, activation="relu", name="Hidden1"))
model.add(Dense(200, activation="relu", name="Hidden2"))
model.add(Dense(100, activation="relu", name="Hidden3"))
model.add(Dense(10, activation="softmax", name="Output"))





# 모델 컴파일
opt = keras.optimizers.Adam(learning_rate=0.005)
model.compile(optimizer = opt,
              loss = "sparse_categorical_crossentropy",
              metrics = ["accuracy"])

 

 

 

 

1. 검증 손실 값과 과대 적합

  • 조기 종료를 이해하기 위해선 이전에 만들었던 그래프를 다시 한번 봐야 한다.

  • 위 그래프는 훈련 셋과 검증 셋의 손실 값(Loss)과 정확도(Accuracy)를 시각화한 것이다.
  • 검증 셋의 손실 값(val_loss, 녹색)은, 쭉 감소하다가 갑자기 손실 값이 증가하게 된다.
  • 이는 모델이 학습 셋에 지나치게 최적화되어, 학습 셋이 아닌 다른 데이터 셋을 이상하게 출력하는 과대 적합(Overfitting) 현상이 발생하여, 일어나는 현상이다.
  • 조기 종료는 검증 셋의 손실 값이 최소가 되는 순간(최적의 모델) 학습을 멈춤으로써, 이러한 과대 적합을 멈추는 아주 간단하면서도 강력한 규제 방법 중 하나다.
  • 참고: "Tensorflow-3.2. 이미지 분류 모델(2)-검증 셋(Validation set)"
  • 조기 종료는 이전 "Tensorflow-3.3. 이미지 분류 모델(3)-모델 생성"에서 잠깐 언급하고 넘어갔던, "스트레치 팬츠(Stretch pants) 방식"을 위한 도구 중 하나다.

 

 

 

 

2. 콜벡(callbacks)

  • 콜벡(callbacks)은 학습 과정에서 영향을 주거나, 발생한 통계 데이터를 출력해주는 함수들의 집합이다.
  • 대표적인 callbacks 함수는 이전 포스트에서 우리가 다뤘던 history로, 워낙 유용하다 보니 자동으로 적용되어 있다.
  • callbacks 함수는 Sequential이나 .fit() 메서드에 전달 가능하다.
  • 조기 종료는 이 callbacks 안에 포함되어 있다.

2.1. 조기 종료

  • 조기 종료는 다음과 같은 방법으로 사용할 수 있다.
early_stop = keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=10, restore_best_weights=True)
history = model.fit(train_images, train_labels,
                    epochs=1000,
                    batch_size=5000,
                    validation_data=(valid_images, valid_labels),
                    callbacks=[early_stop])
  • keras.callbacks.EarlyStopping()의 중요 파라미터는 다음과 같다.
  1. monitor: 관찰할 값 - 일반적으로 검증 손실 값인 var_loss를 사용하며, 간간히 var_acc가 사용되기도 한다.
  2. min_delta: 개선 기준 최소 변화량 - 개선되고 있다고 판단할 수 있는 최소 변화량으로 변화량이 min_delta보다 작다면 개선이 없다고 판단한다.
  3. patience: 정지까지 기다리는 epochs - 당장 최솟값이 나왔다 할지라도, 이 값이 학습을 하다 보면, 더 떨어질 수도 있다. 그러므로, patience에 정해진 epochs만큼 학습을 더 실시하고, 그동안 개선이 없다면, 학습을 멈춘다.
  4. restore_best_weights: 최선 값이 발생한 때로 모델 가중치 복원 여부 - False로 돼 있다면, 학습의 마지막 단계에서 얻어진 모델 가중치가 사용된다.
  • val_loss는 증감을 반복하므로, epochs를 조금 줘서 기다리도록 하자.
  • 위 코드를 실행하면 다음과 같은 결과가 나온다.
Epoch 1/1000
11/11 [==============================] - 2s 177ms/step - loss: 1.5362 - accuracy: 0.4834 - val_loss: 0.4362 - val_accuracy: 0.8714
Epoch 2/1000
11/11 [==============================] - 1s 55ms/step - loss: 0.3673 - accuracy: 0.8928 - val_loss: 0.2479 - val_accuracy: 0.9252
Epoch 3/1000
11/11 [==============================] - 1s 55ms/step - loss: 0.2225 - accuracy: 0.9336 - val_loss: 0.1759 - val_accuracy: 0.9436
Epoch 4/1000
11/11 [==============================] - 1s 61ms/step - loss: 0.1550 - accuracy: 0.9539 - val_loss: 0.1353 - val_accuracy: 0.9560
Epoch 5/1000
11/11 [==============================] - 1s 55ms/step - loss: 0.1185 - accuracy: 0.9649 - val_loss: 0.1108 - val_accuracy: 0.9640

...

Epoch 19/1000
11/11 [==============================] - 1s 54ms/step - loss: 0.0032 - accuracy: 0.9997 - val_loss: 0.0786 - val_accuracy: 0.9806
Epoch 20/1000
11/11 [==============================] - 1s 51ms/step - loss: 0.0026 - accuracy: 0.9999 - val_loss: 0.0841 - val_accuracy: 0.9794
Epoch 21/1000
11/11 [==============================] - 1s 52ms/step - loss: 0.0024 - accuracy: 0.9998 - val_loss: 0.0831 - val_accuracy: 0.9794
Epoch 22/1000
11/11 [==============================] - 1s 60ms/step - loss: 0.0017 - accuracy: 1.0000 - val_loss: 0.0800 - val_accuracy: 0.9798
Epoch 23/1000
11/11 [==============================] - 1s 51ms/step - loss: 0.0013 - accuracy: 1.0000 - val_loss: 0.0845 - val_accuracy: 0.9792
  • epochs를 1000으로 지정하였으나, val_loss가 최솟값을 찍었기 때문에 epoch 23에서 학습을 정지하였다.
  • 조기 종료를 사용하면, 별도의 과정 없이, 손쉽게 최적의 epochs를 찾아낼 수 있으므로, 오차 역전파법을 찾아내 지금의 딥 러닝을 있게 한 1등 공신 중 한 명인 제프리 힌턴은 조기 종료를 "훌륭한 공짜 점심(beautiful free lunch)"이라고 불렀다고 한다.
  • 이외에도 콜벡에는 학습 중간에 자동 저장을 하는 ModelCheckPoint나 학습률을 스케쥴링하는 LearningRateSchedule 등 유용한 기능이 많다. 관심 있는 사람은 다음 아래 사이트를 참고하기 바란다.
    (keras.io/ko/callbacks/)
 

Callbacks - Keras Documentation

Usage of callbacks 콜백은 학습 과정의 특정 단계에서 적용할 함수의 세트입니다. 학습 과정 중 콜백을 사용해서 모델의 내적 상태와 통계자료를 확인 할 수 있습니다. 콜백의 리스트는 (키워드 인수

keras.io

 

 

[참고 서적]

 

 

  지금까지 조기 종료(Early stopping)와 콜백에 대해 알아보았다. 다음 포스트에서는 최종 과정인 모델 평가와 모델 저장 및 불러오기에 대해 학습해보도록 하겠다.

728x90
반응형
728x90
반응형

 이전 포스트에서 모델을 학습시키는 것에 대해 알아보았다. 기존 포스팅에서는 학습을 시키고, 이를 가만히 기다리기만 했었는데, 이 학습 과정에서 발생하는 Log를 분석할 수 있다면, 언제 학습을 멈춰야 할지, 과적합이 발생하였는지 등을 정보다 정확히 알 수 있다. 이번 포스팅에서는 학습과정을 확인하는 방법에 대해 알아보도록 하겠다.

 

 

학습과정 확인(History)

0. 이전 코드 정리

# Import module
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import (Dense, BatchNormalization, Dropout, Flatten)
from tensorflow.keras.datasets.mnist import load_data

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Dataset 준비
(train_images, train_labels), (test_images, test_labels)= load_data()

# 무작위로 샘플 추출
np.random.seed(1234)
index_list = np.arange(0, len(train_labels))
valid_index = np.random.choice(index_list, size = 5000, replace = False)

# 검증셋 추출
valid_images = train_images[valid_index]
valid_labels = train_labels[valid_index]

# 학습셋에서 검증셋 제외
train_index = set(index_list) - set(valid_index)
train_images = train_images[list(train_index)]
train_labels = train_labels[list(train_index)]

# min-max scaling
min_key = np.min(train_images)
max_key = np.max(train_images)

train_images = (train_images - min_key)/(max_key - min_key)
valid_images = (valid_images - min_key)/(max_key - min_key)
test_images = (test_images - min_key)/(max_key - min_key)
# 모델 생성
model = keras.models.Sequential()
model.add(keras.layers.Flatten(input_shape=[28, 28], name="Flatten"))
model.add(Dense(300, activation="relu", name="Hidden1"))
model.add(Dense(200, activation="relu", name="Hidden2"))
model.add(Dense(100, activation="relu", name="Hidden3"))
model.add(Dense(10, activation="softmax", name="Output"))
# 모델 컴파일
opt = keras.optimizers.Adam(learning_rate=0.005)
model.compile(optimizer = opt,
              loss = "sparse_categorical_crossentropy",
              metrics = ["accuracy"])
# 모델 학습하기
history = model.fit(train_images, train_labels,
                    epochs=100,
                    batch_size = 5000,
                    validation_data=(valid_images, valid_labels))
  • 이전 포스팅에서는 model.fit()을 따로 다른 변수에 담지 않았으나, 이번 포스팅에서는 이들을 history라는 변수에 담고, 이를 분석해보도록 하겠다.

 

 

 

 

1. History

  • model.fit()을 실시하여, 학습을 시작하게 되면, 다음과 같은 Log가 출력되게 된다.
history = model.fit(train_images, train_labels,
                    epochs=100,
                    batch_size=5000,
                    validation_data=(valid_images, valid_labels))
Epoch 1/100
11/11 [==============================] - 2s 182ms/step - loss: 1.5596 - accuracy: 0.4747 - val_loss: 0.4669 - val_accuracy: 0.8640
Epoch 2/100
11/11 [==============================] - 1s 57ms/step - loss: 0.3706 - accuracy: 0.8902 - val_loss: 0.2654 - val_accuracy: 0.9182
Epoch 3/100
11/11 [==============================] - 1s 55ms/step - loss: 0.2260 - accuracy: 0.9337 - val_loss: 0.1824 - val_accuracy: 0.9416
Epoch 4/100
11/11 [==============================] - 1s 51ms/step - loss: 0.1626 - accuracy: 0.9514 - val_loss: 0.1369 - val_accuracy: 0.9562
Epoch 5/100
11/11 [==============================] - 1s 52ms/step - loss: 0.1198 - accuracy: 0.9642 - val_loss: 0.1176 - val_accuracy: 0.9624

...

Epoch 96/100
11/11 [==============================] - 1s 52ms/step - loss: 2.8271e-05 - accuracy: 1.0000 - val_loss: 0.1096 - val_accuracy: 0.9788
Epoch 97/100
11/11 [==============================] - 1s 57ms/step - loss: 2.7180e-05 - accuracy: 1.0000 - val_loss: 0.1100 - val_accuracy: 0.9790
Epoch 98/100
11/11 [==============================] - 1s 56ms/step - loss: 2.6393e-05 - accuracy: 1.0000 - val_loss: 0.1101 - val_accuracy: 0.9790
Epoch 99/100
11/11 [==============================] - 1s 50ms/step - loss: 2.5213e-05 - accuracy: 1.0000 - val_loss: 0.1103 - val_accuracy: 0.9792
Epoch 100/100
11/11 [==============================] - 1s 51ms/step - loss: 2.4920e-05 - accuracy: 1.0000 - val_loss: 0.1106 - val_accuracy: 0.9792
  • model.fit()는 History 객체를 반환하며, 이 것이 바로 fit()을 실행하면 반환되는 출력 Log이다.
  • 출력되는 값은 model.compile을 할 때, metrics를 어떻게 지정하느냐에 따라 달라진다.
  • 가장 일반적으로 사용되는 accuracy를 넣고, validation data를 넣으면, loss, accuracy, val_loss, val_acc가 출력되게 된다.
  • 이는 매 에포크마다의 모델을 평가하는 점수라고 할 수 있으며, 그 뜻은 다음과 같다.
  1. loss: 훈련 셋 손실 값
  2. accuracy: 훈련 셋 정확도
  3. val_loss: 검증 셋 손실 값
  4. val_acc: 검증 셋 정확도
  • 만약 검증 셋을 추가하지 않는다면 val_loss, val_acc가 출력되지 않으며, metrics에서 accuracy를 지정하지 않는다면, accuracy도 출력되지 않는다.

 

 

 

 

2. History 데이터를 다뤄보자.

# history를 출력시켜보자.
>>> history
<tensorflow.python.keras.callbacks.History at 0x20f001a1d00>
  • history를 출력시켜보면, <tensorflow.python.keras.callbacks.History at ~~~~~>와 같은 이상한 문자가 출력된다. Python에서는 이를 객체라 부르며, 해당 객체에 다양한 함수를 이용하여 학습과정에서 발생한 다양한 정보를 볼 수 있다.
  • 예를 들어, history.epoch를 입력하면, 전체 epoch를 list로 출력하며, history.params 입력 시, 훈련 파라미터가 반환된다.
  • 우리에게 필요한 것은 history.history로, 이 데이터는 한 에포크가 끝날 때마다 훈련 셋과 검증 셋을 평가한 지표들이 모여 있는 것이다.
# history.history는 각 지표들이 담겨있는 dictionary다
>>> type(history.history)
dict

# history.history의 생김새는 다음과 같다.
>>> history.history
{'loss': [1.1046106815338135,
  0.32885095477104187,
  0.2113472819328308,
  0.1513378769159317,
  0.11605359613895416,
  0.09276161342859268,
  
...

  0.9787999987602234,
  0.9789999723434448,
  0.9789999723434448,
  0.979200005531311,
  0.979200005531311]}
  • 데이터를 파악하기 쉽도록 DataFrame의 형태로 바꿔서 보자.
history_DF = pd.DataFrame(history.history)
history_DF

  • 적합한 epoch를 알기 위해 해당 데이터를 시각화해보자.
  • index는 epoch와 동일하다.
# 꺾은선 그래프를 그리자.
# 그래프의 크기와 선의 굵기를 설정해주었다.
history_DF.plot(figsize=(12, 8), linewidth=3)

# 교차선을 그린다.
plt.grid(True)

# 그래프를 꾸며주는 요소들
plt.legend(loc = "upper right", fontsize =15)
plt.title("Learning Curve", fontsize=30, pad = 30)
plt.xlabel('Epoch', fontsize = 20, loc = 'center', labelpad = 20)
plt.ylabel('Variable', fontsize = 20, rotation = 0, loc='center', labelpad = 40)

# 위 테두리 제거
ax=plt.gca()
ax.spines["right"].set_visible(False) # 오른쪽 테두리 제거
ax.spines["top"].set_visible(False) # 위 테두리 제거

  • 시각화를 해서 4개 지표의 변화 추이를 보았다.
  • 위 그래프의 결과를 해석해보면 다음과 같다.
  1. 훈련 셋과 검증 셋의 그래프가 비슷한 형태를 보였다. 이는 과적합(Overfitting)이 되지 않았다는 것을 의미한다.
  2. 훈련 셋, 검증 셋의 Accuracy는 1을 향해 상승하였다. loss는 0을 향해 하강하는 형태를 보였다. 이는 안정적으로 학습을 하고 있는 것을 의미한다.
  3. 훈련 셋, 검증 셋의 Accuracy와 loss는 epoch 20부터 수렴하기 시작했다.
  4. 검증 셋의 loss는 epoch가 20을 넘는 순간부터 소폭 증가하는 형태를 보였다.
  5. 검증 셋의 손실 값이 최저값을 약 epoch 20에서 달성하였으므로, 모델이 완전히 수렴하였다고 할 수 있다.
  • 기존에 epochs을 100으로 설정하였으나, loss와 accuracy가 수렴한 지점을 볼 때, 이는 과하게 큰 값임을 알 수 있다. epochs를 30으로 줄여서 다시 학습을 해보도록 하자.
  • epoch가 불필요하게 큰 경우, 리소스의 낭비가 발생하기도 하지만, 과적합(Overfitting)이 될 위험이 있으므로, 적합한 epoch에서 학습을 해주는 것이 좋다.
  • epoch가 커지면 커질수록 훈련 셋의 성능은 검증 셋의 성능보다 높게 나온다. 검증 셋의 손실(var_loss)의 감소가 아직 이루어지고 있는 상태라면, 모델이 완전히 수렴되지 않은 상태라 할 수 있으므로, 검증 셋 손실의 감소가 더 이상 이루어지지 않을 때 까진 학습을 해야 한다.

 

epochs를 30으로 하여 다시 학습해보자.

history = model.fit(train_images, train_labels,
                    epochs=30,
                    batch_size=5000,
                    validation_data=(valid_images, valid_labels))
history_DF = pd.DataFrame(history.history)
# 꺾은선 그래프를 그리자.
# 그래프의 크기와 선의 굵기를 설정해주었다.
history_DF.plot(figsize=(12, 8), linewidth=3)

# 교차선을 그린다.
plt.grid(True)

plt.legend(loc = "upper right", fontsize =15)

plt.title("Learning Curve", fontsize=30, pad = 30)
plt.xlabel('Epoch', fontsize = 20, loc = 'center', labelpad = 20)
plt.ylabel('Variable', fontsize = 20, rotation = 0, loc='center', labelpad = 40)

# 위 테두리 제거
ax=plt.gca()
ax.spines["right"].set_visible(False) # 오른쪽 테두리 제거
ax.spines["top"].set_visible(False) # 위 테두리 제거

  • 위 그래프를 보면 검증 셋이 연습 셋 보다 더 빠르게 0과 1로 다가가는 것으로 오해할 수 있으나, 훈련 셋의 지표는 epoch 도중에 계산되고, 검증 셋의 지표는 epoch 종료 후 계산되므로, 훈련 곡선을 왼쪽으로 소폭(에포크의 절반만큼) 이동시켜야 한다.
  • 혹시나 해서 하는 말이지만, 모델이 생성된 후에 다시 학습을 하려면, 커널을 재시작해서 모델의 파라미터를 초기화시키고 학습해야 한다. Tensorflow는 이미 학습이 되어 파라미터가 생긴 모델을 재학습 시키면, 기존의 파라미터를 감안하여 학습을 하게 된다.

 

 

[참고 서적]

 

 

 지금까지 모델 학습 과정에서 발생한 history 객체를 이용해서, 학습 셋과 검증 셋의 지표들을 시각화하고, 과적합이 발생하였는지, 적합한 epochs이 얼마인지 탐색해보았다.

 간단하게 검증 셋과 학습 셋의 그래프가 비슷한 경향을 보이면 과적합이 일어나지 않고 있다는 것을 의미하며, 0과 1에 수렴하지 못한다면, 하이퍼 파라미터가 주어진 데이터셋에 맞지 않다는 것을 의미한다. 또한 epochs가 수렴 이후에도 지속되는 경우, 연습 셋에 과적합 될 수 있으므로, 적당한 epochs를 설정하는 것이 중요하다.

 그러나, 꼭 위 방법처럼 epoch를 갱신해서 다시 학습을 해줘야 하는 것은 아니다. 다음 포스트에서는 epoch가 아직 남았더라도, 조건을 만족하면 알아서 학습을 멈추는 조기 종료에 대해 알아보도록 하겠다.

728x90
반응형
728x90
반응형

 이전 포스트까지 모델 컴파일에 대해 알아보았다. 이번 포스트에서는 모델을 학습에 대해 자세히 알아보도록 하자.

 

 

모델 학습과 학습 과정 확인

0. 이전 코드 정리

# Import module
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import (Dense, BatchNormalization, Dropout, Flatten)
from tensorflow.keras.datasets.mnist import load_data

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Dataset 준비
(train_images, train_labels), (test_images, test_labels)= load_data()

# 무작위로 샘플 추출
np.random.seed(1234)
index_list = np.arange(0, len(train_labels))
valid_index = np.random.choice(index_list, size = 5000, replace = False)

# 검증셋 추출
valid_images = train_images[valid_index]
valid_labels = train_labels[valid_index]

# 학습셋에서 검증셋 제외
train_index = set(index_list) - set(valid_index)
train_images = train_images[list(train_index)]
train_labels = train_labels[list(train_index)]

# min-max scaling
min_key = np.min(train_images)
max_key = np.max(train_images)

train_images = (train_images - min_key)/(max_key - min_key)
valid_images = (valid_images - min_key)/(max_key - min_key)
test_images = (test_images - min_key)/(max_key - min_key)
# 모델 생성
model = keras.models.Sequential()
model.add(keras.layers.Flatten(input_shape=[28, 28], name="Flatten"))
model.add(Dense(300, activation="relu", name="Hidden1"))
model.add(Dense(200, activation="relu", name="Hidden2"))
model.add(Dense(100, activation="relu", name="Hidden3"))
model.add(Dense(10, activation="softmax", name="Output"))
# 모델 컴파일
opt = keras.optimizers.Adam(learning_rate=0.005)
model.compile(optimizer = opt,
              loss = "sparse_categorical_crossentropy",
              metrics = ["accuracy"])

 

 

 

 

1. 모델 학습

# 모델 학습하기
history = model.fit(train_images, train_labels,
                    epochs=100,
                    batch_size = 5000,
                    validation_data=(valid_images, valid_labels))
Epoch 1/100
11/11 [==============================] - 2s 185ms/step - loss: 1.5537 - accuracy: 0.4795 - val_loss: 0.4806 - val_accuracy: 0.8638
Epoch 2/100
11/11 [==============================] - 1s 52ms/step - loss: 0.3852 - accuracy: 0.8864 - val_loss: 0.2727 - val_accuracy: 0.9204
Epoch 3/100
11/11 [==============================] - 1s 53ms/step - loss: 0.2276 - accuracy: 0.9327 - val_loss: 0.1879 - val_accuracy: 0.9406
Epoch 4/100
11/11 [==============================] - 1s 53ms/step - loss: 0.1617 - accuracy: 0.9522 - val_loss: 0.1460 - val_accuracy: 0.9558
Epoch 5/100
11/11 [==============================] - 1s 52ms/step - loss: 0.1213 - accuracy: 0.9650 - val_loss: 0.1222 - val_accuracy: 0.9618

...

Epoch 96/100
11/11 [==============================] - 1s 54ms/step - loss: 2.8528e-05 - accuracy: 1.0000 - val_loss: 0.1078 - val_accuracy: 0.9804
Epoch 97/100
11/11 [==============================] - 1s 59ms/step - loss: 2.9069e-05 - accuracy: 1.0000 - val_loss: 0.1080 - val_accuracy: 0.9806
Epoch 98/100
11/11 [==============================] - 1s 56ms/step - loss: 2.7108e-05 - accuracy: 1.0000 - val_loss: 0.1082 - val_accuracy: 0.9806
Epoch 99/100
11/11 [==============================] - 1s 51ms/step - loss: 2.8243e-05 - accuracy: 1.0000 - val_loss: 0.1086 - val_accuracy: 0.9806
Epoch 100/100
11/11 [==============================] - 1s 50ms/step - loss: 2.6565e-05 - accuracy: 1.0000 - val_loss: 0.1086 - val_accuracy: 0.9804
  • 이전 포스팅까지는 model.fit(train_set, train_label, epochs)만 설정하였었으나, 이번 포스팅에서는 model.fit(train_set, train_label, epochs, batch_size, validation_data)로 처음 보는 인자들이 여럿 등장한 것을 볼 수 있다.
  • train_set, train_label, epochs는 여러 번 본 인자이므로 넘어가고, batch_size와 validation_data를 위주로 설명해보겠다.
  • 아직 epochs에 대한 개념이 헷갈린다면 다음 포스팅을 참고하기 바란다.
    참고: "머신러닝-6.2. 최적화(3)-학습단위(Epoch, Batch size, Iteration)

 

 

 

 

2. Batch size

  • model.fit() 함수 안에 batch_size라는 인자가 추가된 것을 볼 수 있다.
  • batch_size는 전체 데이터셋을 한 번에 학습시키자니, 데이터가 너무 크기 때문에 메모리 과부하와 속도 저하 문제가 발생하므로, 데이터를 Batch size만큼 쪼개서 학습을 시키는 것을 의미한다.
  • 학습 단위에 대한 보다 자세한 설명은 다음 포스팅을 참고하기 바란다.
  • Batch size는 전체 데이터셋을 Batch size로 나눴을 때, 나머지가 생기지 않은 크기로 만드는 것이 좋다.
  • Batch size를 너무 크게 하면, 메모리 과부하가 발생하기 쉬우나, 더 많은 데이터를 보고 파라미터를 결정하므로 학습이 안정적으로 진행된다.
  • Batch size를 너무 작게 하면, 자주 파라미터 갱신이 발생하므로 학습이 불안정해진다.
  • Batch size를 얼마나 잡느냐에 대해선 정답이 없다고 할 수 있는데, 어떤 사람들은 자신의 머신이 가진 메모리를 넘지 않는 선에서 Batch size를 최대로 잡는 것이 좋다고 하고, 또 다른 사람은 32보다 큰 미니배치를 사용해선 절대 안된다고도 했다.
  • 양쪽 다 주장이 꽤 탄탄하므로, 미니 배치를 크게도 해보고 작게도 해보며, 결과를 비교해보도록 하자.

 

2.1. Batch size의 효과

  • Batch size는 학습에 걸리는 시간과 학습에 소모되는 메모리에 큰 영향을 미친다.
  • 얼마나 차이가 나는지 확인하기 위해 Batch size를 설정하지 않은 학습과 설정하지 않은 학습을 비교해보도록 하자.

 A. Batch size를 지정하지 않는 경우

from time import time
start = time()

history = model.fit(train_images, train_labels,
                    epochs=100,
                    validation_data=(valid_images, valid_labels))
...
>>> print("코드 동작 시간: {} minutes".format(round((time() - start)/60, 2)))
코드 동작 시간: 6.39 minutes
  • time 모듈의 time() 함수는 1970년 1월 1일 0시 0분 0초 이후 경과한 시간을 초 단위로 반환하는 함수로, time함수의 차를 이용해서, 특정 구간에서 소모된 시간을 알 수 있다.
  • Batch size를 사용하지 않고, 모든 데이터를 한 번에 학습시키는 경우, 6.39분이 소모된 것을 볼 수 있다.

B. Batch size를 지정한 경우

start = time()

history = model.fit(train_images, train_labels,
                    epochs=100,
                    batch_size=5000,
                    validation_data=(valid_images, valid_labels))
...
>>> print("코드 동작 시간: {} minutes".format(round((time.time() - start)/60, 2)))
코드 동작 시간: 1.0 minutes
  • Batch size를 사용하자, 학습에 소모된 시간이 1.0분으로 6배 이상 감소한 것을 볼 수 있다.
  • 이번에 학습에 사용한 MNIST는 그다지 큰 데이터도 아님에도 소모 시간 차이가 이렇게 크게 발생한 것을 볼 때, 이보다 더 큰 데이터를 다루게 되는 실제 상황에서 Batch size 지정은 필수임을 알 수 있다.

 

 

 

 

3. validation data

  • 이전 학습에서 validation_data를 지정하지 않았듯, 검증 셋을 지정하지 않아도 학습을 하는 데는 문제가 없지만, 검증 셋이 존재한다면, 매 학습 때마다 모델을 평가하여, 최적의 모델을 만들어내는데 큰 도움이 된다.
  • 검증 셋에 대해 헷갈리는 분을 위해 이전 포스트 링크를 걸어놓도록 하겠다.
    (참고: "Tensorflow-3.2. 이미지 분류 모델(2)-검증 셋(Validation set)")
  • validation data는 위 방법처럼 검증 셋을 미리 뽑고, 학습을 진행하는 방법도 있지만 자동으로 검증 셋을 뽑아놓는 방법도 존재한다.
  • model.fit() 함수의 파라미터에 validation_split이라는 인자가 존재하는데, 이는 float으로 지정할 수 있으며, 데이터를 섞기(Shuffle) 전에 지정한 비율만큼의 데이터를 검증 셋으로 사용한다.
  • 그러나, 참고 포스팅에서 보듯 검증 셋을 대표성 있게 추출하는 것은 매우 중요하므로, 사전에 검증 셋을 미리 추출하는 것을 추천한다.
  • 이밖에도 validation_steps, validation_batch_size, validation_freq와 같은 검증 셋 관련 파라미터들이 더 존재하지만, 이들에 대해서는 추후 다루도록 하겠다.

 

 

 

 

 지금까지 모델의 학습(Fit)에 대해 알아보았다. 이전에 fit()에 사용했던 파라미터들은 학습을 위해 필요한 최소한의 파라미터들이었다면, 이번에 사용한 파라미터들은 가장 일반적으로 사용되는 파라미터들이다. 

 fit() 함수는 이밖에도 샘플별 가중치 조정(sample_weight)이나, 특정 클래스에 대한 가중치 조정(class_weight)과 같은 다양한 기능들을 더 가지고 있다. 그러나, 이들까지 모두 다루기는 쉽지 않고, 이번에 다룬 내용만 알더라도 Tensorflow를 적당히 다루는데 지장이 없으므로, 여기까지 학습을 하고, 나중에 필요하다면 더 자세히 다뤄보도록 하겠다.

 다음 포스트에선 학습 과정에서 나온 Log들을 분석하는 History 객체의 사용법에 대해 학습해보도록 하겠다.

728x90
반응형
728x90
반응형

 이전 포스트에서 모델을 생성해보고, 생성된 모델의 정보를 살펴보았다. 이번 포스트에서는 모델을 컴파일에 대해 학습해보도록 하겠다.

 

 

모델 컴파일

0. 이전 코드 정리

# Import Module
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import (Dense, BatchNormalization, Dropout, Flatten)
from tensorflow.keras.datasets.mnist import load_data

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Dataset 준비
(train_images, train_labels), (test_images, test_labels)= load_data()

# 무작위로 샘플 추출
np.random.seed(1234)
index_list = np.arange(0, len(train_labels))
valid_index = np.random.choice(index_list, size = 5000, replace = False)

# 검증셋 추출
valid_images = train_images[valid_index]
valid_labels = train_labels[valid_index]

# 학습셋에서 검증셋 제외
train_index = set(index_list) - set(valid_index)
train_images = train_images[list(train_index)]
train_labels = train_labels[list(train_index)]

# min-max scaling
min_key = np.min(train_images)
max_key = np.max(train_images)

train_images = (train_images - min_key)/(max_key - min_key)
valid_images = (valid_images - min_key)/(max_key - min_key)
test_images = (test_images - min_key)/(max_key - min_key)
# 모델 생성
model = keras.models.Sequential()
model.add(keras.layers.Flatten(input_shape=[28, 28], name="Flatten"))
model.add(Dense(300, activation="relu", name="Hidden1"))
model.add(Dense(200, activation="relu", name="Hidden2"))
model.add(Dense(100, activation="relu", name="Hidden3"))
model.add(Dense(10, activation="softmax", name="Output"))

 

 

 

 

1. 모델 컴파일

# 모델 컴파일
opt = keras.optimizers.Adam(learning_rate=0.005)
model.compile(optimizer = opt,
              loss = "sparse_categorical_crossentropy",
              metrics = ["accuracy"])
  • 모델을 어떤 방식으로 학습시킬지 결정하는 과정이다.
  • 모델 컴파일에서 지정하는 주요 항목은 최적화 방법인 옵티마이저(Optimizer)와 손실 함수(loss)이다.
  • 추가로, 훈련과 평가 시 계산할 지표를 추가로 지정할 수 있다(metrics).

 

 

 

 

2. Optimizer

  • 최적화 방법인 Optimizer는 경사 하강법(GD)을 어떤 방법으로 사용할지를 정한다고 생각하면 된다.
  • Optimizer를 정하는 이유는 Optimizer 방법을 무엇을 선택하느냐에 따라 최적해를 찾아가는 속도가 크게 달라진다.
  • 경사 하강법(GD)은 기본적으로 4가지 문제가 존재하며, 이는 다음과 같다.
    (좀 더 자세히 알고 싶은 사람은 다음 포스팅: "머신러닝-6.1. 최적화(2)-경사하강법의 한계점"을 참고하기 바란다.)
  1. 데이터가 많아질수록 계산량이 증가함
  2. Local minimum 문제
  3. Plateau 문제
  4. Zigzag 문제
  • 위 문제들을 간단하게 말하면, 경사 하강법이 가진 구조적 단점으로 인해, 최적해를 제대로 찾아가지 못하거나, 찾는 속도가 늦어진다는 것이다.
  • 이를 해결하기 위해선 데이터셋에 맞는 Optimizer를 사용해야 하며, 단순하게 가장 많이 사용하는 Optimizer가 Adam이므로, Adam을 사용하는 것은 그다지 추천할 수 없는 방법이다.
# Optimizer는
model.compile(optimizer = "Adam",
              loss = "sparse_categorical_crossentropy",
              metrics = ["accuracy"])
  • 위 방법으로 Optimizer를 하게 되면, 코드는 단순하지만, 학습률, Momentum과 같은 Optimizer 고유의 하이퍼 파라미터를 수정할 수 없다. 
# 모델 컴파일
opt = keras.optimizers.Adam(learning_rate=0.005)
model.compile(optimizer = opt,
              loss = "sparse_categorical_crossentropy",
              metrics = ["accuracy"])
  • 위 방법으로 Optimizer를 잡아줘야, 각종 하이퍼 파라미터를 수정할 수 있다.
  • keras.optimizers. 뒤에 원하는 optimizer를 넣으면 된다.

 

 

 

 

3. Optimizer의 종류

  • Optimizer는 기본적으로 SGD를 기반으로 하므로, 확률적 추출을 통해 경사 하강법을 시행한다.
  • Optimizer는 크게 Momentum 방식(관성 부여)과 Adagrad 방식(상황에 따른 이동 거리 조정)으로 나뉜다.
  • Momentum 방식과 Adagrad 방식을 하나로 합친 방법이 Adam과 Nadam이다.
  • 다른 Optimizer를 사용함으로 인해 최적해를 찾아가는 방법이 달라지게 되고, 그로 인해 학습 속도가 바뀌게 된다.
  • Local minimum 문제는 무작위 가중치 초기화로 인해 발생할 가능성이 매우 낮다.
  • 단순하게 Adam만 고집하지 말고, 여러 Optimizer를 사용하길 바란다.
  • Optimizer와 경사하강법에 대한 상세한 설명을 보고자 한다면, 다음 포스트를 참고하기 바란다.
  • 참고: "머신러닝-6.0. 최적화(1)-손실함수와 경사하강법"

Optimizer별 최적해 수렴 속도 차이

  • 별이 최적해라고 할 때, 각종 Optimizer가 최적해를 찾아가는 방식을 시각화한 것이다.
  • 해가 n개이므로, 파라미터는 평면이 아니라 입체이며, 이 입체를 이해하기 쉽도록 2차원 등고선으로 그린 것이다.

  • 말안장 그림이라 하여, 3차원으로 최적해를 찾아가는 과정을 그린 것이다.
  • SGD는 지역 최솟값(Local minimum)에 빠져 최적해를 찾아가지 못하였다.
  • 위 두 그림의 출처는 다음과 같으며, 보다 자세한 설명을 보고 싶은 경우 해당 사이트를 참고하기 바란다.
  • ruder.io/optimizing-gradient-descent/
 

An overview of gradient descent optimization algorithms

Gradient descent is the preferred way to optimize neural networks and many other machine learning algorithms but is often used as a black box. This post explores how many of the most popular gradient-based optimization algorithms such as Momentum, Adagrad,

ruder.io

 

 

 

 

 

4. loss

  • 손실 함수는 데이터셋과 라벨 데이터의 생김새에 따라 사용하는 방법이 달라진다.
  • 기본적으로 연속형 데이터를 대상으로는 제곱 오차(SE)에서 파생된 기법을 사용하며, 범주형 데이터를 대상으로는 크로스 엔트로피 오차(CEE)에서 파생된 기법을 사용한다.
  • 클래스의 수나 Label의 형태에 따라 사용하는 방법이 조금씩 달라진다.
  • 가장 많이 사용되는 손실 함수의 사용 예는 다음과 같다.
데이터 형태 Label의 형태 손실 함수
범주형 클래스 2개 binary_crossentropy
클래스
3개 이상
원-핫 벡터 categorical_crossentropy
단순 범주형 sparse_categorical_crossentropy
연속형 mean_squared_error
(=mse)
mean_squared_logarithmic_error
(=msle)
 

Module: tf.keras.losses  |  TensorFlow Core v2.4.1

Built-in loss functions.

www.tensorflow.org

 

 

 

 

 

5. metrics

  • 평가 기준으로 모델의 학습에는 영향을 미치지 않으나, 학습 중에 제대로 학습되고 있는지를 볼 수 있다.
  • metrics에 무엇을 넣느냐에 따라 학습 시, 히스토리에 나오는 출력 Log가 달라지게 된다.
  • 일반적으로 accuracy 즉, 정확도가 사용된다.
  • 이 역시 데이터 셋에 따라 바뀌며, 손실 함수와 유사한 것을 선택하면 된다.
  • metrics에 사용하는 하이퍼 파라미터는 아래 사이트를 참고하기 바란다.
  • keras.io/api/metrics/
 

Keras documentation: Metrics

Metrics A metric is a function that is used to judge the performance of your model. Metric functions are similar to loss functions, except that the results from evaluating a metric are not used when training the model. Note that you may use any loss functi

keras.io

 

 

 

 

 지금까지 Compile을 하는 방법에 대해 알아보았다. Compile은 일반적으로 사용하는 기법을 사용하여도 큰 차이를 느끼지 못할 수도 있으나, 제대로 모델을 학습시키기 위해선 데이터의 형태에 맞는 하이퍼 파라미터를 잡아주는 것이 좋다.

 다음 포스트에서는 모델을 실제로 학습시켜보고, 그 Log를 시각화하여 최적의 Epochs을 선택하는 방법에 대해 학습해보겠다.

 

728x90
반응형
728x90
반응형

 지난 포스트에서 MNIST 데이터 셋을 사용하여, 검증 셋(Validation set)을 생성해보았다. 이번 포스트에서는 Keras의 중심인 모델을 만들어보도록 하겠다.

 

 

모델 생성

0. 이전 코드 정리

# Import Module
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import (Dense, BatchNormalization, Dropout)
from tensorflow.keras.datasets.mnist import load_data

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
################################### Function ###################################

# Data 시각화
def show_images(dataset, label, nrow, ncol):

    # 캔버스 설정
    fig, axes = plt.subplots(nrows=nrow, ncols=ncol, figsize=(2*ncol,2*nrow))
    ax = axes.ravel()

    xlabels = label[0:nrow*ncol]

    for i in range(nrow*ncol):

        image = dataset[i]
        ax[i].imshow(image, cmap='gray')
        ax[i].set_xticks([])
        ax[i].set_yticks([])
        ax[i].set_xlabel(xlabels[i])

    # 빈 칸 없이 꽉 채우기
    plt.tight_layout()
    plt.show()
    
################################################################################
# Dataset 준비
(train_images, train_labels), (test_images, test_labels)= load_data()

# 무작위로 샘플 추출
np.random.seed(1234)
index_list = np.arange(0, len(train_labels))
valid_index = np.random.choice(index_list, size = 5000, replace = False)

# 검증셋 추출
valid_images = train_images[valid_index]
valid_labels = train_labels[valid_index]

# 학습셋에서 검증셋 제외
train_index = set(index_list) - set(valid_index)
train_images = train_images[list(train_index)]
train_labels = train_labels[list(train_index)]

# min-max scaling
min_key = np.min(train_images)
max_key = np.max(train_images)
train_images = (train_images - min_key)/(max_key - min_key)
valid_images = (valid_images - min_key)/(max_key - min_key)
test_images = (test_images - min_key)/(max_key - min_key)

 

 

 

 

1. 모델 생성

  • 이전에 만들었던 모델들에 들어간 데이터들은 1차원 배열이 n개의 row로 구성된 형태였다.
>>> train_images.shape
(60000, 28, 28)
  • 그러나, 이번 데이터셋은 28*28인 행렬이 60000개 row로 쌓인 형태다.
  • 이때 평활(Flatten)이라는 개념이 추가로 등장한다.
  • 모델을 먼저 만들어보자.
# 모델 생성
model = keras.models.Sequential()
model.add(keras.layers.Flatten(input_shape=[28, 28], name="Flatten"))
model.add(Dense(300, activation="relu", name="Hidden1"))
model.add(Dense(200, activation="relu", name="Hidden2"))
model.add(Dense(100, activation="relu", name="Hidden3"))
model.add(Dense(10, activation="softmax", name="Output"))
  • 각 Layer를 구분하기 쉽도록 name이라는 parameter를 추가해주었다.
  • 이전과 달리 Flatten이라는 Layer가 새로 추가되었다.
  • Flatten Layer는 입력된 2차원 배열을 1차원 배열로 만들어주는 전처리용 Layer다.
  • 한 Row가 X = (1, 28, 28)인 데이터셋을 X.reshape(-1, 28*28)으로 형 변환해준다고 생각하면 된다. 
>>> X = train_images[0]
>>> X.reshape(-1, 28*28).shape
(1, 784)
  • 평활 Layer 통과는 각 Row에 적용되므로, 전체 데이터 셋의 형태가 (60000, 28, 28)에서 (60000, 784)로 바뀐다고 생각해도 좋다.

 

 

 

 

2. 은닉층 설정하기

  • 지금까지의 포스팅에선 은닉층의 수와 은닉층에 있는 노드의 수를 정할 때, 어째서 이렇게 구성하였는지 설명하지 않았다. 이번에는 은닉층을 설정할 때, 무엇을 인지한 상태로 은닉층을 만들어야 하는지에 대해 학습해보도록 하겠다.

 

2.1. 은닉층의 개수

  • 은닉층의 개수가 1개인 경우를 얕은 신경망이라고 하며, 2개 이상인 경우를 심층 신경망이라고 한다.
  • 이론적으로 입력층, 은닉층, 출력층으로 3개의 층만 있는 경우에도 뉴런수만 충분하다면 아주 복잡한 함수도 모델링할 수 있다.
    George Cybenko(1989), Approximation by superpositions of a sigmoidal function - 조지 시벤코의 시벤코 정리: 뉴런 수만 무한하다면 은닉층 하나로 어떤 함수도 근사할 수 있다.
  • 그러나, 심층 신경망은 얕은 신경망보다 적은 노드를 사용하여, 과적합 문제에서 비교적 자유롭고, 얕은 신경망보다 적은 epochs로 최적해에 수렴하게 된다.
  • 이는 은닉층의 수가 늘어날수록, 저수준에서 고수준으로 체계적으로 구조를 모델링할 수 있기 때문이다.
  • 예를 들어, 3개의 은닉층을 사용해 사람을 구분하는 모델을 만들고자 한다면, Hidden1에서는 가장 저수준의 구조인 사람과 배경을 구분하는 일을, Hidden2에서는 사람의 머리, 몸, 키 등을 구분하는 일을, Hidden3에서는 가장 고수준인 사람의 얼굴과 머리스타일을 구분하도록 모델링하게 된다.
  • 이러한 계층 구조는 심층 신경망이 새로운 데이터에 대해 일반화하는 능력도 향상하게 해 준다.
  • 계층 구조는 기존 모델에 추가 기능이 생긴 업그레이드된 모델을 만들 때, 기존 모델의 파라미터를 하위 은닉층에서 재사용해 훈련을 진행할 수 있다. 이를 전이 학습(Transfer Learning)이라 한다.

 

2.2. 은닉층의 뉴런 개수

  • 데이터 셋에 따라 다르긴 하지만 모델에서 은닉층의 뉴런 수를 정할 땐, 다음과 같은 경향이 있다.
  • 일반적으로 첫 번째 은닉층을 제일 크게 하는 것이 도움된다.
  • 만약 한 층의 뉴런 수가 지나치게 적다면, 전달되는 정보 중 일부가 사라져 버릴 수 있다. 
  • 깔때기 형태: 은닉층의 구성은 일반적으로 각 층의 뉴런의 수를 점차 줄여가며, 깔때기처럼 구성한다. 이는 저수준의 많은 특성이 고수준의 적은 특성으로 합쳐질 수 있기 때문이다.
  • 직사각형 형태: 모든 은닉층의 뉴런 수를 같게 함. 이렇게 모델링을 하는 경우, 깔때기 형태와 동일하거나 더 나은 성능을 내는 경우도 있다고 한다.
  • 일반적으로 은닉층의 뉴런 수를 늘리는 것보다 은닉층의 수를 늘리는 쪽이 유리하다.

 

2.3. 스트레치 팬츠(Stretch pants) 방식

  • 실제 필요한 것보다 은닉층의 수와 뉴런의 수를 크게 하고, 과대 적합이 발생하지 않도록, 조기 종료를 하거나 규제 기법을 사용하는 방법
  • 말 그대로 "자기에게 맞는 바지를 찾는 것이 아닌, 큰 스트레치 팬츠를 사고 나중에 나에 맞게 줄이는 기법"이라 할 수 있다.
  • 해당 방식 사용 시, 모델에서 문제를 일으키는 병목층을 피할 수 있다.

 

 

 

 

3. 생성된 모델 정보

  • 이전 포스트까지는 단순하게 모델을 생성하고 바로 학습으로 뛰어들었지만, 이번엔 모델의 요약 정보를 보고 진행해보자.
>>> model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
Flatten (Flatten)            (None, 784)               0         
_________________________________________________________________
Hidden1 (Dense)              (None, 300)               235500    
_________________________________________________________________
Hidden2 (Dense)              (None, 200)               60200     
_________________________________________________________________
Hidden3 (Dense)              (None, 100)               20100     
_________________________________________________________________
Output (Dense)               (None, 10)                1010      
=================================================================
Total params: 316,810
Trainable params: 316,810
Non-trainable params: 0
_________________________________________________________________
  • model.summary(): 모델의 요약 정보를 보여준다.
  • Layer (type)을 보면, 앞서 설정한 Layer의 이름과 어떤 Layer인지가 나온다.
  • Output shape에서 None은 아직 모르는 값으로, Input 될 데이터의 양을 의미한다.
  • Input Data는 2-d 배열인 행렬이지만, 1-d 배열로 학습이 진행되므로 shape은 1-d 배열인 것을 알 수 있다.
  • Param은 각 Layer별 파라미터의 수로, Dense Layer는 Input layer와 Output layer의 모든 노드를 연결하는 완전 연결 계층이기 때문에 연결된 선(Param)이 많다.
  • Hidden1은 이전 층의 Node가 784개이고, 자신의 Node가 300개이므로, 가중치(Weight)의 엣지가 784*300=235,200개 생성된다. 여기에 편향(Bias)의 엣지가 자신의 Node 수만큼 존재하므로, +300을 하여, 235,500개의 Param이 존재하게 된다.
  • 위 모델 같이 파라미터의 수가 많은 경우, 과대 적합(Overfitting)의 위험이 올라갈 수 있으며, 특히 훈련 데이터의 양이 많지 않은 경우 이 위험이 증가하게 된다.

 

 

[참고 서적]

 

 

 지금까지 모델을 생성하고, 그 정보를 보는 방법에 대해 학습해보았다. 다음 포스팅에서는 모델 컴파일과 학습을 진행해보도록 하겠다.

 

728x90
반응형

+ Recent posts