728x90
반응형
지난 포스트에서는 기계학습에서 사용되는 최적화 알고리즘인 경사 하강법에 대하여 살펴보았다. 이번 포스트에서는 경사 하강법의 한계점에 대해 학습해보도록 하겠다.
경사 하강법의 한계점
- 앞서 손실함수를 기반으로 경사 하강법의 개형을 그려보았으나, 실제로는 저렇게 깔끔한 이차 함수 형태를 그리지 않는다.
- 퍼셉트론의 공식이 활성화 함수를 타게 되면, 손실 함수의 모습은 거시적인 관점에서 봤을 때는 최적해를 1개 가진 이차 함수의 형태를 그리긴 하지만, 그 모습이 울퉁불퉁해져 최적해에 수렴하기 어려워진다.
- 이번 포스트에서는 경사하강법의 한계점에 대해 하나하나 짚고 넘어가 보도록 하겠다.
1. 데이터가 많아질수록 계산량 증가
- 앞서, 경사하강법(Gradient Descent)은 신경망에서 출력되는 예측값(Predict)과 실제값(Label)의 차이인 손실 함수(Loss Function)의 값을 최소화하는 것이 목적이다.
- 그러나, 학습용 데이터 셋이 많아진다면, 당연히 계산량도 무지막지하게 많아지게 되는데, 그로 인해 학습 속도가 매우 느려지게 된다.
- 기계학습에는 아주 거대한 빅데이터가 사용되게 되는데, 이러한 퍼포먼스 문제는 결코 무시할 수 없는 문제다.
2. Local minimum(Optima) 문제
- 앞서 그린 대략적인 손실함수의 개형은 굉장히 매끈하였으나, 활성화 함수로 인해 그 모양이 울퉁불퉁해지게 되고, 그로 인해 최적해에 수렴하지 못할 수 있다.
- 아래 그래프를 보도록 하자.
- 실제 손실함수의 모양은 위 그래프보다 울퉁불퉁한 정도가 심하나 이해를 돕기 위해 일부분만 가져와봤다.
- 위 그래프에서 $\alpha$를 전역 최소해(Global minimum), $\beta$를 지역 최소해(Local minimum)라 한다.
- 경사 하강법의 목적은 손실 함수에서 랜덤 하게 선택한 가중치를 미분하여 나온 결과를 힌트로 해서, 최적해를 찾아가는 것인데, 위 그래프처럼 만약 랜덤 하게 선택된 가중치가 Local minimum 가까이에 있고, Local minimum에 수렴해버리면, 실제 목표인 Global minimum을 찾지 못하는 문제가 발생할 수 있다.
- 만약, 학습률(Learning Rate)을 너무 크게 설정한다면, Global minimum에 가까운 곳에서 시작한다 할지라도, 구간을 뛰어넘어 Local minimum에서 수렴할 수도 있다.
- 그러나, 실제로는 모델의 학습이 지역 최소값(Local minimum)에 빠져, 최적의 가중치를 못 찾는 일이 발생할 위험은 그리 크지 않다.
- 학습 시 가중치를 초기화하여 반복하여 최적해를 찾아가므로, $\beta$에서 수렴하여 Loss값이 0 가까이 떨어지지 못한다할지라도, 시작 위치가 다른 가중치에서 전역 최소값(Global minimum)에 수렴하여 Loss값이 0에 수렴할 수 있다.
- 즉, 모든 초기화된 가중치가 지역 최솟값에 수렴할 수 있는 위치에 존재하지 않는다면, 지역 최솟값 문제는 발생하지 않는다. 그러므로, Local minimum 현상의 발생 위험은 그리 크지 않다고 할 수 있다.
3. Plateau 문제
- 1. Local minimum 문제의 예시에서는 손실함수의 모양이 전반적으로 곡선을 그렸으나, 손실 함수의 안에는 평탄한 영역이 존재하기도 한다.
- 위 그래프에서 Plateau(플래튜)라고 불리는 평탄한 영역에서는 학습 속도가 매우 느려지며, 느려지다 못해 정지해버릴 위험이 존재한다.
- 경사 하강법의 공식을 보면, "현 지점의 기울기 X 학습률"을 통해 다음 가중치를 결정하는데, 평탄한 영역의 기울기는 매우 낮기 때문에 이동거리가 갈수록 줄어들게 되고, 그로 인해 더 이상 학습이 일어나지 않는 가중치 소실(Gradient Vanishing) 현상이 발생할 수 있다.
- 이러한 Plateau 현상이 발생하면, 극솟값에 수렴하지 못해, 학습 시간이 매우 길어지고, 경사하강법의 랜덤 한 가중치에서 현재의 기울기를 힌트로 기울기가 0인 극솟값에 수렴시켜 최적해를 찾는다는 알고리즘이 제대로 작동하지 못하게 된다.
4. Zigzag 문제
- 지금까지 경사하강법을 설명할 때, 이해하기 용이하도록 가중치($w$)가 1개만 있는 2차원 그래프를 사용했으나, 실제론 가중치의 수가 매우 많다. 이번엔 가중치가 2개인($w_1, w_2$) 3차원 그래프를 등고선으로 그려보자.
- 위 그래프는 2개의 매개변수($w_1, w_2$)에 대한 손실 함수를 등고선으로 그린 것이다.
- 가중치의 스케일(크기)이 동일하다면, 최적해로 바로 찾아갈 수 있으나, 가중치는 모르는 임의의 값이므로, 스케일이 동일하리란 보장이 없다.
- 만약, 가중치 스케일이 다르다면, 다음과 같은 현상이 발생하게 된다.
- 두 매개변수 $w_1$의 스케일이 $w_2$보다 크다보니, 손실 함수는 $x$축 방향 가중치인 $w_1$의 변화에 매우 둔감하고, $y$축인 $w_2$의 변화에 매우 민감하다.
- 즉, $w_2$의 크기가 $w_2$에 비해 매우 작다보니, $w_2$가 조금만 변해도 손실 함수는 크게 변하게 되어, 두 매개변수의 변화에 따른 손실 함수 변화가 일정하지 않다.
- 위 경우는 매개변수가 2개밖에 존재하지 않았으나, 실제에서는 그 수가 수백만개에 달할 수 있을 정도로 많기 때문에 이러한 Zigzag 현상은 더욱 복잡해지며, 그로 인해 최적해를 찾아가기가 어려워지고, 학습 시간 역시 길어지게 된다.
지금까지 경사하강법의 문제점에 대해 알아보았다. 머신러닝에서는 위 문제들을 해결하기 위해 경사 하강법을 효율적으로 사용하기 위한 최적화 기법(Optimizer)들이 매우 많다.
예를 들어 다음 포스트에서 학습할 SGD나 가장 많이 사용되는 Adam, Momentum, Adagrad 등이 있는데, 각 최적화 알고리즘들은 데이터의 형태에 따라 그에 맞는 방법을 사용하길 바란다.
다음 포스트에서는 최적화 기법의 가장 기초가 되는 확률적 경사 하강법(Stochastic Gradient Descent, SGD)에 대해 학습해보도록 하겠다.
[참조]
towardsdatascience.com/demystifying-optimizations-for-machine-learning-c6c6405d3eea
www.programmersought.com/article/59882346228/
nittaku.tistory.com/271?category=742607
728x90
반응형
'Machine Learning > Deep Learning' 카테고리의 다른 글
딥러닝-6.3. 최적화(4)-확률적 경사 하강법(SGD) (0) | 2021.02.05 |
---|---|
딥러닝-6.2. 최적화(3)-학습 단위(Epoch, Batch size, Iteration) (2) | 2021.02.05 |
딥러닝-6.0. 최적화(1)-손실함수와 경사하강법 (0) | 2021.02.03 |
딥러닝-5.5. 손실함수(6)-범주형 교차 엔트로피 오차(CCEE) (0) | 2021.02.01 |
딥러닝-5.4. 손실함수(5)-이진 교차 엔트로피 오차(BCEE) (0) | 2021.02.01 |