728x90
반응형

선형 회귀(Linear Regression)

 통계학의 꽃이라고도 불리는 선형 회귀(Linear Regression)는 수많은 머신러닝 알고리즘의 기반이 되기도 하기 때문에, 반드시 그 원리를 이해해야하는 알고리즘 중 하나다.

 선형 회귀의 원리를 단순하게 말하자면, 관찰값으로부터 가장 거리가 짧은 데이터를 대표할 수 있는 선을 긋는 것이며, 그 선을 회귀식이라고 한다. 관찰값으로부터 가장 짧은 거리인지를 평가하는 방법은 최소제곱법(Least Square Method)이 주로 사용된다.

 

 

 

 

1. 회귀식


$$\hat{y} = \theta_0 + \theta_1x_1 + \theta_2x_2 + \cdots + \theta_nx_n \ \ \ \cdots①$$

$$\hat{y} = h_\theta(x) = \theta \cdot x   \ \ \ \cdots②$$


  • 회귀식은 기본적으로 해가 $n$개인 일차 연립방정식의 형태이며, 계수와 특성의 값의 곱의 합에 편향(Bias, 절편 - Intercept)을 더한 것이다.
  • $\theta_n$는 해당 관찰값의 계수로, 관찰값 $x_n$가 예측값에 미치는 영향을 보여준다.
  • 계수 $\theta$는 음과 양의 부호를 가질 수 있으며, 이를 통해 해당 특성(변수, 필드)가 종속변수(예측값)에 어떠한 영향을 주는지 볼 수 있다.

1.1. 식 ①의 설명

  • $\hat{y}$: 예측값으로, 종속변수(Dependent variable)이라 한다.
  • $n$: 특성의 수, 독립변수(Independent variable)의 수이다.
  • $x_i$: $i$번째 특성값으로, $i$번째 독립변수를 의미한다.
  • $\theta_j$: $j$번째 모델 파라미터로, 머신러닝 알고리즘 스스로가 학습을 통해 찾아내는 값이다.

1.2. 식 ②의 설명

  • 식 ①을 벡터 형태로 바꾼 것으로, $\theta$와 $x$가 열 벡터(Column vector) 라면, 예측은 $\hat{y} = \theta^Tx$가 된다.
  • 열 벡터란 하나의 열(Column)을 가진 2D 배열이며, $\theta^T$는 열벡터 $\theta$의 전치(Transpose)이다.
  • 두 열 벡터 $\theta$와 $x$의 길이는 서로 동일하므로, 전치 벡터와 길이가 동일한 벡터를 곱하면, 동일한 위치의 원소끼리 곱하고, 더하는 효과가 발생한다.
  • $\theta$: 편향 $\theta_0$와 계수 $\theta_1, \theta_2, \cdots, \theta_n$에 대한 모델 파라미터 벡터다.
  • $x$: $x_0, x_1, \cdots, x_n$까지의 데이터의 특성 벡터다. $x_0$는 편향과 곱해지는 값이므로 무조건 1이다.
  • $\theta \cdot x$: 벡터 $\theta$와 $x$의 점곱으로, $\theta_0x_0 + \theta_1x_1 + \theta_2x_2 + \cdots + \theta_nx_n$과 같다.
  • $h_\theta$: 모델 파라미터 $\theta$를 사용한 가설(Hypothesis) 함수다.

 

 

 

 

 

2. 손실함수 RMSE & MSE

  • 선형 회귀 모델의 학습은 훈련 데이터 셋(Train dataset)에 가장 잘 맞는 모델 파라미터($\theta$)를 찾아내는 것이다.
  • 이를 위해 모델이 훈련 데이터에 얼마나 잘 맞는지 측정해야한다.
  • 선형 회귀 모형은 평균 제곱근 오차(Root Mean Square Error, RMSE)를 사용하여, 모델의 성능을 평가하며, RMSE를 최소화하는 $\theta$를 찾아내는 것이 선형 회귀 모델의 학습 과정이다.
  • RMSE 공식은 다음과 같다.

$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(\hat{y_i} - y_i)^2}$$

$$ RMSE(X, h_{\theta}) = RMSE(\theta) = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(\theta^Tx^{(i)} - y^{(i)})^2} $$


  • 평균 제곱근 오차(RMSE)의 원리는 표준편차와 동일하다. 예측값과 실제 관측값의 편차 제곱의 합의 평균에 제곱근을 씌워 제곱의 합을 보정해주는 것이다.
  • 평균 제곱근 오차(RMSE)에 대하여 더 자세히 알고자하는 경우, 다음 포스트 "딥러닝-5.2. 손실함수(3)-평균제곱근오차(RMSE)"를 참고하길 바란다.
  • 예측값과 실제값의 편차의 평균에 가장 근사한 지표는 RMSE지만, 실제 선형 회귀 모델을 만들 때는 평균 제곱 오차(Mean Square Error, MSE)가 더 많이 사용된다.
  • MSE 공식은 다음과 같다.

$$ MSE = \frac{1}{n}\sum_{i=1}^{n}(\hat{y_i} - y_i)^2 $$

$$ MSE(X, h_{\theta}) = MSE(\theta) = \frac{1}{n}\sum_{i=1}^{n}(\theta^Tx^{(i)} - y^{(i)})^2 $$


  • RMSE보다 MSE를 사용하는 이유는 제곱근을 사용하지 않았기 때문에 실제 값보다 증폭된 결과가 도출되긴 하지만, 공식이 더 간단하며, 미분하기도 쉽다.
    어차피 MSE로 도출된 결과들을 비교하기 때문에 다른 모델과 비교할 때, 보다 엄격한 결과가 나오는 RMSE를 굳이 사용할 필요가 없다.
  • MSE에 대해 보다 자세히 알고자 하는 경우, 다음 포스트 "딥러닝-5.1. 손실함수(2)-평균제곱오차(MSE)"를 참고하기 바란다.
  • 선형 회귀 모델에서의 학습은 비용 함수(Cost function, 손실 함수 - Loss function)인 RMSE나 MSE를 최소로 만드는 $\theta$를 찾는 것이다.

 

 

 

 

 

3. 정규방정식(Normal equation)


$$\hat{\theta} = (X^TX)^{-1}X^Ty$$


  • $\hat{\theta}$: 비용 함수를 최소화하는 $\theta$값이다.
  • $y$: $y^(1)$부터 $y^{(m)}$까지 포함하는 타깃 벡터다.
  • 정규방정식(Normal equation, Ordinary least squares, linear least squrares)는 선형 회귀에서 모델 파라미터인 $\theta$를 예측하기 위해 사용하는 최적화 알고리즘이다.
  • 위 정규방정식은 MSE를 통해 유도 된다.

 

3.1. 정규방정식의 유도

  • MSE 공식은 다음과 같다. $MSE(\theta) = \frac{1}{n}\sum_{i=1}^{n}(\theta^Tx^{(i)} - y^{(i)})^2$ 
  • 위 공식을 보면, MSE 공식은 $\theta^T$에 대하여 이차함수의 개형을 갖는 것을 알 수 있다.
  • 그러므로, MSE을 $theta^T$에 대하여 편미분의 결과가 0이 나오게 하는 $\theta^T$의 값이 MSE를 최소로 만드는 값임을 알 수 있다.
  • 위 내용을 이용하여, 정규방정식을 유도해보자.

 

3.2. 정규방정식과 경사하강법의 차이점

  • 대표적인 최적화 알고리즘인 경사하강법(참고: "딥러닝-6.0. 최적화(1)-손실함수와 경사하강법")은 학습률(Learning rate)를 기반으로 점진적으로 최적해를 찾아간다.
  • MSE를 유도하여 만들어진 정규방정식은 행렬 연산을 통해 한 번에 최적해를 구한다.
  • 정규방정식은 행렬 연산을 통해 결과를 구하기 때문에 피처의 크기(Column * Row의 양)가 커지면 커질수록 계산 시간이 오래 걸린다.
  • 경사하강법은 계산이 일어나 기본적으로 소모되는 시간이 크긴 하지만, 아무리 피처의 크기가 크더라도 일정 시간 안에 최적해를 찾아낼 수 있다.
  • 즉, 피처의 크기가 지나치게 크다면 선형 회귀에서도 경사하강법을 사용하는 것이 좋으며, 피처의 크기가 적당한 수준이라면, 정규방정식을 사용하도록 하자.

 

 

[참고]

 

 

 

 다음 포스트에서는 파이썬 넘파이(Numpy) 함수만을 사용해서 선형 회귀 모델을 구현해보고, 사이킷런을 사용해서 선형 회귀 모델을 사용해보도록 하자.

728x90
반응형

+ Recent posts