728x90
반응형

 지난 포스트에서 작성한 코드들을 간략히 정리해보고, 본격적으로 학습 및 결과 평가를 해보자.

 

 

학습 목표

  • 분석가가 알고 있는 패턴$f(x) = x + 10$에 대한 데이터를 생성하고, 그 패턴을 찾아내는 모델을 만들어보자.
  • Input은 Node 1개, Output도 Node 1개인 연속형 데이터를 생성한다.

 

 

 

1. 지난 코드 정리

# Import Module
import pandas as pd
import numpy as np
from tensorflow import keras
from tensorflow.keras.layers import Dense



# Dataset Setting
def f(x):
    return x + 10
    
# Data set 생성
np.random.seed(1234)   # 동일한 난수가 나오도록 Seed를 고정한다.
X_train = np.random.randint(0, 100, (100, 1))
X_test = np.random.randint(100, 200, (20, 1))

# Label 생성
y_train = f(X_train)
y_test = f(X_test)



# Model Setting
model = keras.Sequential()
model.add(Dense(16, activation='relu'))
model.add(Dense(1, activation='linear'))



# Compile: 학습 셋팅
opt = keras.optimizers.Adam(learning_rate=0.01)
model.compile(optimizer=opt, loss = 'mse')

 

 

 

2. 학습 시작

>>> model.fit(X_train, y_train, epochs = 100)
  • model.fit(): model에 대해 학습을 시작한다.
  • fit() 안에는 train dataset, train data label, validation dataset 등이 들어갈 수 있다.
  • validation dataset은 성능 향상에 도움이 되나, 꼭 필요한 것은 아니다.
  • epochs은 전체 train set을 몇 번 학습할 것인가를 의미한다.
  • 해당 코드를 실행하면 다음과 같은 문자들이 출력된다.
Epoch 1/100
4/4 [==============================] - 0s 2ms/step - loss: 955.4686
Epoch 2/100
4/4 [==============================] - 0s 998us/step - loss: 342.0951
Epoch 3/100
4/4 [==============================] - 0s 2ms/step - loss: 51.7757
Epoch 4/100
4/4 [==============================] - 0s 1ms/step - loss: 43.6929
Epoch 5/100
4/4 [==============================] - 0s 2ms/step - loss: 95.3333
Epoch 6/100
4/4 [==============================] - 0s 2ms/step - loss: 76.1808
Epoch 7/100
4/4 [==============================] - 0s 1ms/step - loss: 29.2552
Epoch 8/100
4/4 [==============================] - 0s 2ms/step - loss: 21.1532

...

Epoch 94/100
4/4 [==============================] - 0s 2ms/step - loss: 4.9562
Epoch 95/100
4/4 [==============================] - 0s 1ms/step - loss: 5.3142
Epoch 96/100
4/4 [==============================] - 0s 996us/step - loss: 5.0884
Epoch 97/100
4/4 [==============================] - 0s 2ms/step - loss: 4.9754
Epoch 98/100
4/4 [==============================] - 0s 2ms/step - loss: 5.3013
Epoch 99/100
4/4 [==============================] - 0s 1ms/step - loss: 5.0656
Epoch 100/100
4/4 [==============================] - 0s 1ms/step - loss: 4.4677
<tensorflow.python.keras.callbacks.History at 0x12fe8f0f520>
  • 위 내용을 history라고 하며, 따로 history를 지정하지 않아도 출력된다.
  • loss는 손실 값을 의미하며, 해당 값이 최소화되는 위치를 찾는 것이 목적이다.
  • 일반적으로 loss가 0에 근사 해지는 것을 목적으로 한다.
  • 만약 loss가 0에서 지나치게 먼 값에서 수렴한다면, 모델에 들어간 인자들(HyperParameter)이 잘못 들어간 것일 가능성이 매우 높으므로, 모델을 수정하길 바란다.
  • loss가 지금처럼 0에 가깝게 내려 가긴 했으나, 그 정도가 0에 미치지 못한 경우 단순하게 epoch를 늘려보자.
>>> model.fit(X_train, y_train, epochs = 500)

Epoch 1/500
4/4 [==============================] - 1s 2ms/step - loss: 9528.2801
Epoch 2/500
4/4 [==============================] - 0s 2ms/step - loss: 7191.2032
Epoch 3/500
4/4 [==============================] - 0s 2ms/step - loss: 4662.3104
Epoch 4/500
4/4 [==============================] - 0s 1ms/step - loss: 2927.8638
Epoch 5/500
4/4 [==============================] - 0s 2ms/step - loss: 1738.3485
Epoch 6/500
4/4 [==============================] - 0s 2ms/step - loss: 877.1409

...

Epoch 495/500
4/4 [==============================] - 0s 2ms/step - loss: 0.0126
Epoch 496/500
4/4 [==============================] - 0s 1ms/step - loss: 0.0139
Epoch 497/500
4/4 [==============================] - 0s 1ms/step - loss: 0.0183
Epoch 498/500
4/4 [==============================] - 0s 1ms/step - loss: 0.0180
Epoch 499/500
4/4 [==============================] - 0s 2ms/step - loss: 0.0168
Epoch 500/500
4/4 [==============================] - 0s 2ms/step - loss: 0.0229
  • Epochs를 500까지 올렸으나, loss 값이 원하는 만큼 나오지 않는 것을 볼 수 있다.

 

 

 

 

3. 결과를 확인해보자.

  • 결과 확인은 상당히 단순하면서도 새로운 알고리즘을 만들어내야 할 필요성이 있는 영역이다.
>>>  model.predict(X_test.reshape(X_test.shape[0]))

array([[195.04504 ],
       [151.02899 ],
       [111.01437 ],
       [124.019135],
       [113.015114],
       [140.02496 ],
       [122.0184  ],
       [183.04066 ],
       [129.02095 ],
       [136.02351 ],
       [206.04909 ],
       [178.03883 ],
       [174.03737 ],
       [132.02205 ],
       [166.03447 ],
       [194.0447  ],
       [118.01694 ],
       [154.03008 ],
       [134.02278 ],
       [204.04832 ]], dtype=float32)
  • model.predict(array): 들어간 array에 대하여 모델의 파라미터(가중치)들이 순방향으로 연산되어 나온 결과가 출력된다.
  • 모델에 Input되는 데이터와 predict에 들어가는 데이터의 모양은 조금 다르다.
# 모델 Input 시
>>> X_test.shape
(20, 1)

# Predict Input 시
>>> X_test.reshape(X_test.shape[0]).shape
(20,)
  • 모델 학습 시엔 데이터를 행 단위로 떨어뜨려 넣었다면, predict에선 위와 같이 넣어줘야 한다.

 

test set의 Label과 비교해보자.

  • predict 결과와 Label 데이터인 y_test를 비교해보자.
pred = model.predict(X_test.reshape(X_test.shape[0]))
predict_DF = pd.DataFrame({"predict":pred.reshape(pred.shape[0]), "label":y_test.reshape(y_test.shape[0])})
predict_DF["gap"] = predict_DF["predict"] - predict_DF["label"]
predict_DF

  • predict와 label이 어느 정도 근사하게 나오긴 하였으나, 얼마나 근사하게 나왔는지 보기가 어렵다.
  • 모델을 평가하기 쉽도록, RMSE를 사용하여 Scalar값(숫자 1개)으로 바꿔주자.
>>> print("Accuracy:", np.sqrt(np.mean((pred - y_test)**2)))
Accuracy: 0.10477323661232778
  • 0.1047로 나름 나쁘지 않은 결과가 나오긴 하였으나, $f(x) = x + 10$ 같이 굉장히 단순한 패턴을 만족스러운 수준으로 찾아내지 못했다.
  • 게다가 패턴도 지나치게 단순한데, epochs가 500이나 사용되어, 생각보다 많은 자원이 낭비되었다.

 

 

 

 이번 포스트에서는 널리 알려진 방식대로 학습을 시켜보았다. 그러나, 아주 단순한 패턴임에도 불구하고, 쉽게 찾아내질 못하였으며, 그 결과도 원하는 것에 미치지 못했다.

 다음 포스트에서는 어디가 잘못되었는지 찾아내 이를 수정해보도록 하자.

728x90
반응형
728x90
반응형

 지난 포스트에서 데이터 셋에 대해 간략히 설명해보았다. 이번 포스트부터 본격적으로 텐서플로우를 사용해서, 내가 찾아내고 싶은 알고리즘을 찾아내 보자.

 

 

학습 목표

  • 분석가가 알고 있는 패턴으로 데이터를 생성하고, 그 패턴을 찾아내는 모델을 만들어보자.
  • Input이 1개, Output이 1개인 연속형 데이터에서 패턴을 찾아보자.

 

 

 

1. 데이터 셋 생성

  • 패턴: $f(x) = x + 10$
# Module 설정
import pandas as pd
import numpy as np
from tensorflow import keras
from tensorflow.keras.layers import Dense
def f(x):
    return x + 10
    
# Data set 생성
np.random.seed(1234)   # 동일한 난수가 나오도록 Seed를 고정한다.
X_train = np.random.randint(0, 100, (100, 1))
X_test = np.random.randint(100, 200, (20, 1))

# Label 생성
y_train = f(X_train)
y_test = f(X_test)

 

데이터 셋 생성 코드의 함수 설명

  1. np.random.seed(int):  난수(랜덤 한 데이터) 생성 시, 그 값은 생성할 때마다 바뀌게 된다. 데이터 셋이 바뀌게 되면, 일관된 결과를 얻기가 힘들어, 제대로 된 비교가 힘들어지므로, 난수를 생성하는 방식을 고정시킨다. 이를 시드 결정(Set seed)이라 하며, 숫자는 아무 숫자나 넣어도 상관없다.
  2. np.random.randint(시작 int, 끝 int, shape): 시작 숫자(포함)부터 끝 숫자(미포함)까지 shape의 형태대로 array를 생성한다.

 

데이터 셋 생성 코드 설명

  1. Train set은 0~100까지의 숫자를 랜덤으로 (100, 1)의 형태로 추출하였다.
  2. Test set은 100~200까지의 숫자로 랜덤으로 (20, 1)의 형태로 추출했다. 여기서 값은 Train set과 절대 겹쳐선 안된다.
  3. Label 데이터인 y_train과 y_test는 위에서 설정된 함수 f(x)에 의해 결정되었다.

 

  • train 데이터 생김새(가시성을 위해 10개까지만 출력)
# train Dataset을 10개까지만 가져와보자
>>> X_train[:10]

array([[47],
       [83],
       [38],
       [53],
       [76],
       [24],
       [15],
       [49],
       [23],
       [26]])
       
>>> X_train.shape
(100, 1)
  • 생성된 데이터 셋의 형태는 "(데이터 셋 수, 변수의 수)"라고 인지해도 좋다.
  • 여기서 "변수의 수"는 "데이터 하나의 벡터 크기"라고 생각하는 것이 더 적합하다.
  • 기본적으로 Tensorflow에 Input 되고 Output 되는 데이터의 형태는 이렇다고 생각하자.

 

 

 

 

2. 모델 생성하기

  • tensorflow를 사용해 모델을 생성하는 경우, tensorflow가 아닌 keras를 사용하게 된다.
  • 위에서 tensorflow의 기능을 가져올 때, 아래와 같은 코드로 가져왔다.
  • from tensorflow import keras
  • 이는, tensorflow라는 프레임워크에서 keras라는 모듈을 가지고 온다는 의미이다.
  • keras는 추후 설명하게 될지도 모르지만, 모델 생성 및 학습에 있어 직관적으로 코드를 짤 수 있게 해 주므로, 쉽게 tensorflow를 사용할 수 있게 해 준다.
  • 물론, keras와 tensorflow는 태생적으로 서로 다른 프레임워크이므로, 이 둘이 따로 에러를 일으켜, 에러 해결을 어렵게 한다는 단점이 있긴 하지만, 그걸 감안하고 쓸만한 가치가 있다.
model = keras.Sequential()
model.add(Dense(16, activation='relu'))
model.add(Dense(1, activation='linear'))
  • keras를 사용해서 모델을 만드는 방법은 크게 2가지가 있다.
  • 하나는 위 같이 add를 이용해서 layer를 하나씩 추가해 가는 방법이 있고
model = keras.Sequential([
    Dense(16, activation='relu'),
    Dense(1, activation='linear')
])
  • 이렇게 keras.Sequential([]) 안에 층(layer)을 직접 넣는 방법이 있다.
  • 처음 방법처럼 add를 사용하는 방법은 API 사용 방법이고, 아래와 같이 층을 Sequential([])에 직접 넣는 방식은 Layer 인스턴스를 생성자에게 넘겨주는 방법이라 하는데, 전자인 API를 사용하는 방법을 개인적으로 추천한다.
  • 그 이유는 다중-아웃풋 모델, 비순환 유향 그래프, 레이어 공유 모델 같이 복잡한 모델 정의 시, 매우 유리하기 때문으로, 이는 나중에 다루겠으나, 이 것이 Tensorflow의 장점이다.

 

모델 생성 코드 함수 설명

  1. keras.Sequential(): 순차 모델이라 하며, 레이어를 선형으로 연결해 구성한다. 일반적으로 사용하는 모델로 하나의 텐서가 입력되고 출력되는 단일 입력, 단일 출력에 사용된다. 다중 입력, 다중 출력을 하는 경우나, 레이어를 공유하는 등의 경우엔 사용하지 않는다.
  2. model.add(layer): layer를 model에 층으로 쌓는다. 즉, 위 모델은 2개의 층을 가진 모델이다.
  3. Dense(노드 수, 활성화 함수): 완전 연결 계층으로, 전, 후 층을 완전히 연결해주는 Layer다. 가장 일반적으로 사용되는 Layer다.

 

모델 생성 코드 설명

  1. 해당 모델은 Input 되는 tensor도 1개 Output 되는 tensor도 1개이므로, Sequential()로 모델을 구성했다.
  2. 은닉층에는 일반적으로 ReLU 활성화 함수가 사용된다고 하니, ReLU를 넣었다.
  3. 출력층에는 출력 결과가 입력 값과 같은 노드 1개이므로, 노드 1개로 출력층을 만들었다. 
  4. 일반적으로 Node의 수를 $2^n$으로 해야 한다고 하지만, 크게 상관없다는 말이 있으므로, 굳이 신경 쓰지 않아도 된다. 처음엔 자기가 넣고 싶은 값을 넣다가, 성능이 안 나온다 싶으면 바꿔보는 수준이니 크게 신경 쓰지 말자.
  5. 사용된 활성화 함수(activation)는 일반적으로 은닉층에 ReLU를 넣고, 연속형 데이터이므로 출력층에 Linear를 넣어보았다.

 

 

 

 

3. 모델 컴파일하기

  • 컴파일은 모델을 학습시키기 전에 어떤 방식으로 학습을 시킬지를 설정하는 과정이다.
opt = keras.optimizers.Adam(learning_rate=0.01)
model.compile(optimizer=opt, loss = 'mse')

 

코드 설명

  1. keras.optimizers.Adam(): 최적화에 사용할 함수를 위처럼 외부에서 만들어서 넣는 경우, 학습률, 모멘텀 같은 인자들을 입맛에 맞게 바꿀 수 있다.
  2. model.complie(): 학습 방식을 설정한다.

 

compile은 기본적으로 3가지 인자를 입력으로 받는다.

  1. optimizer: 최적화하는 방법으로, 경사 하강법(GD)을 어떤 방법을 통해 사용할지를 결정한다. 일반적으로 Adam이 많이 사용된다.
  2. loss: 손실 함수를 설정한다. 일반적으로 연속형 데이터라면 제곱 오차 시리즈를, 분류 데이터라면 교차 엔트로피 오차 시리즈를 사용한다.
  3. metric: 기준이 되는 것으로, 분류를 할 때 주로 사용한다.
  • 손실 함수와 최적화에 관심이 있다면 다음 포스트(손실 함수, 최적화)를 참고하길 바란다.

 

 

 

 자, 지금까지 학습을 위한 모델 세팅을 완료하였다. 다음 포스트에서는 위 코드들을 깔끔하게 정리하고, 실제 학습을 해보겠다.

728x90
반응형
728x90
반응형

지난 포스트에서 기계학습(Machine Learning)에 대해 간략하게 알아보았다.
이번 포스트에선 기계학습을 수월하게 할 수 있게 해주는 텐서플로우(Tensorflow)에 대해 알아보도록 하자.

 

 

텐서플로우(Tensorflow)란?

  • 텐서플로우는 구글에서 2015년에 공개한 기계학습 라이브러리로, 일반인들도 기계학습을 사용할 수 있을정도로 난이도가 낮고, 아주 강력한 성능을 가지고 있다.
  • 단, 텐서플로우는 딥러닝 알고리즘인 인공신경망이 한 번 학습되기 시작하면 신경망의 구조가 고정되어버리기 때문에 특정 프로젝트에 최적화하여 사용하는데 한계가 있다.
  • 최적화까지 감안하여 기계학습을 하기 위해선, 신경망의 구조까지 스스로 학습하며 변하는 페이스북 인공지능팀에서 개발한 파이토치(PyTorch)를 사용해야한다(텐서플로우와 파이토치의 성능차이는 상당히 큰 편이다).
    • 텐서플로우는 참고 자료가 더 많고, 사용자가 파이토치보다 텐서플로우가 많은 편이므로, 텐서플로우를 먼저 학습하고, 그 후에 파이토치를 학습할 예정이다.
  • GPU, CPU 2가지 버전이 존재하며, GPU는 tensorflow-gpu라는 패키지를 따로 다운로드 받아야한다.
    • GPU는 NVIDIA의 CUDA를 사용하므로, NVIDIA 그래픽 카드가 필수이다.
  • 본 포스트에서는 텐서플로우 Version 2.0.0으로 학습할 예정이다.
  • 텐서플로우2는 Keras를 기반으로 작동한다.

 

※ CPU와 GPU를 왜 구분해서 사용하는 것일까???

  • CPU와 GPU의 차이를 간단하게 설명하자면 다음과 같다.
  • CPU는 아~~~주 머리가 좋은 친구로, 전교 10등 안에 들어가는 수학 천재인 친구다. 수능에서 4점짜리 문제들도 쉽게 풀정도로 어려운 수학 문제도 큰 힘을 들이지 않고 풀 수 있는 친구지만, 당연히 숫자가 적고, 한 번에 할 수 있는 일이 많지가 않다.
  • GPU는 기본적인 수학 능력을 갖춘 평범한 친구들이다. 수능에서 2점짜리 문제 같이 간단한 수학 문제라면 손 쉽게 풀 수 있지만, 어려운 수학 문제를 푸는데는 한 세월이 걸린다. 숫자가 1,000명 정도로 엄청나게 많다.
  • 자, 이를 더 간추려 말해보면 CPU는 머리가 좋지만 숫자가 적고, GPU는 머리는 평범하지만 숫자가 많은 친구들이다.
  • Python이나 R은 기본적으로 CPU 연산을 하며, CPU 연산을 하다보니 아무리 어려운 문제라 할지라도 크게 힘들이지 않고 풀 수 있지만, 머신러닝에서는 이야기가 달라진다. 딥러닝에서 사용되는 가장 대표적인 알고리즘인 인공신경망은 기본적으로 행렬 연산을 통해 계산되는데, 이러한 행렬 연산은 더하기, 빼기, 곱하기, 나누기와 같은 기본적인 사칙연산을 수십 만번 실시한다고 생각하면 된다.
  • 자, 사칙연산 수십 만번을 머리가 엄청 좋은 한 명에게 시키는 것과 평범하지만 사칙연산은 충분히 해내는 천 명에게 시키는 것, 이 둘 중 무엇이 더 효율적일까?? 당연히 사칙연산을 충분히 해낼 수 있는 천 명에게 문제를 주는 것이 훨씬 빠르지 않겠는가.
  • 이처럼 기계학습의 특징은 어려운 연산도 물론 있지만, 이 어려운 연산은 CPU에게 맡기면 되고, 쉬운 연산은 GPU에게 맡기는 방식을 사용한다. 즉, 컴퓨터의 자원을 이분화시켜 사용하는 것이 기계학습의 특징이다.

 

 

 

텐서플로우(cpu) 설치 방법

  • 텐서플로우만 설치하는 것은 난이도가 상당히 낮은 편이다.
  • 텐서플로우는 버전 2.0.0을 설치할 것이다.
    1. PyCharm의 UI를 이용해서 설치하기
      File > Settings > +버튼 >  tensorflow 검색 및 선택 > Specify version 체크 > 드롭박스에서 버전 2.0.0으로 선택 > Install Package 클릭
    2. 터미널에서 설치하기(아나콘다 가상환경을 만든 경우 *추천)
      cmd 실행 > conda env list(가상환경 목록 확인) > conda activate 가상환경이름 > pip install tensorflow==2.0.0

 

 

 

텐서플로우-gpu 설치 방법

  • tensorflow-gpu 설치를 위해서는 몇 가지 사전 작업이 필요하다.
    1. NVIDIA 그래픽 카드
    2. CUDA Toolkit 10.0 Version 설치
    3. cuDNN 설치
    4. PATH 설정
  • tensorflow-gpu는 gpu를 이용해서 연산하므로, 컴퓨터 환경에 gpu 셋팅을 해줘야한다.
  • NVIDIA 그래픽 카드가 설치되어있다는 전재하에 설치 해보도록 하겠다.
  • CUDA Toolkit의 버전은 11까지 나왔지만, 아직 호환성에 문제가 있는지 제대로 설치가 되지 않는다. 또한, 우리는 텐서플로우 버전 2.0으로 작업할 예정이므로, 이에 맞는 CUDA Toolkit Version 10.0을 사용해보도록 하자.
  • 설치 환경은 Windows이다.

 

 

1. CUDA Toolkit을 설치해보자.

CUDA Toolkit 10.0 버전 싸이트로 들어가자

 

CUDA Toolkit 10.0 Archive

Select Target Platform Click on the green buttons that describe your target platform. Only supported platforms will be shown. Operating System Architecture Distribution Version Installer Type Do you want to cross-compile? Yes No Select Host Platform Click

developer.nvidia.com

 

내 환경에 맞는 버전으로 다운로드 받자

  • Windows 환경에서 사용할 예정이다.
  • Windows는 10을 사용하고 있다.
  • 오프라인 환경에서도 사용할 수 있도록 Local로 다운로드 받겠다.
    (인터넷이 되는 환경이라면, 시간이 오래걸리므로 exe(network)로 다운로드 받도록 하자.)

 

이제 설치를 해보자.

  • CUDA  설치는 크게 어렵지 않다.
  • 따로 경로나 설정에서 손을 볼 것은 없으므로, 그냥 쭉 진행하면 된다.

 

 

 

2. cuDNN을 설치해보자.

 

 

NVIDIA cuDNN

NVIDIA cuDNN The NVIDIA CUDA Deep Neural Network library (cuDNN) is a GPU-accelerated library of primitives for deep neural networks. cuDNN provides highly tuned implementations for standard routines such as forward and backward convolution, pooling, norma

developer.nvidia.com

  1. Download cuDNN을 클릭한다.
  2. cuDNN은 로그인을 해야만 설치 가능하므로, 아이디가 없다면, 아이디를 만들고 로그인하도록 하자.

 

 

CUDA와 내 환경에 맞는 버전으로 설치하자.

  • CUDA v10.0으로 설치하였으므로, cuDNN은 v7.6.5.로 다운로드 받겠다.
  • Windows 10 환경으로 설치하겠다.

 

 

  • cuDNN을 CUDA가 설치된 위치에 덮어씌우도록 하자.
    • 만약  CUDA를 설치할 때, 따로 경로를 손대지 않았다면 아래 경로에 덮어 씌우면 된다.
    • C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0
    • 위 경로에 cuDNN 압축파일을 해제하여 나온 파일들을 덮어씌우자.

 

 

 

3. PATH를 설정해주자.

  • cmd에 들어가자.
  • 아래와 같게 타이핑 해주자
    • SET PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin;%PATH%
    • SET PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\extras\CUPTI\libx64;%PATH%
    • SET PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\include;%PATH%
    • SET PATH=C:\tools\cuda\bin;%PATH%

 

 

 

위까지 작업을 마치면, tensorflow-gpu를 설치할 환경이 완료된 것이다. 만약 위 셋팅을 마쳤음에도 tensorflow-gpu가 설치되지 않는다면, Visual Studio를 설치해주거나 업데이트 해주도록 하자.

자 지금까지 텐서플로우를 사용할 수 있는 환경 셋팅을 모두 완료해보았다. 텐서플로우 설치는 pip install을 이용해서 설치하면 되며, 이에 대한 내용은 python 카테고리에서 패키지 설치법을 확인해보도록 하자.

다음 포스트에서는 텐서플로우를 쓰는법에 대해 차근차근 알아가보자.

728x90
반응형

+ Recent posts